Область определения функции - значения аргумента(x) при которых функция(y) имеет смысл.
a)Так как никаких ограничений нет(x не стоит в знаменателе, под знаком корня и другое), то x принадлежит R.
б)Так как в знаменателе стоит линейное уравнение, то x будет принадлежать R, кроме значения знаменателя, равного 0.
x+7=0
x=-7
Значит, x принадлежит R, кроме x=-7
Для того, чтобы найти область значения функции на промежутке нужно подставить вместо x крайние значения.
y=(2×(-1)+8)/7=6/7
y=(2×5+8)/7=18/7=2 4/7
Значит, y принадлежит промежутку [6/7; 2 4/7]
См. Объяснение
Объяснение:
Первый
1) Находим координату х вершины параболы:
- b/2a = -(-16)/(-2) = - 8
2) Так как ветви параболы направлены вниз ( а - отрицательное), то
при х = - 8 у=-х²-16х+3 = maximum, а это значит, что на промежутке (-∞, -8) функция возрастает; а на промежутке [-8,+8) убывает.
Второй
1) Рассчитаем производную
у'= - 2х-16
2) В точке экстремума функции (её максимума или минимума) производная равна нулю:
- 2х-16 = 0
х = - 8
3) Левее точке х = -8 производная имеет знак + (например, при х = - 10 у'= + 4), - значит, на промежутке (-∞, -8) функция у=-х²-16х+3 возрастает;
правее точки х = -8 производная имеет знак - (например, при х = 0 у'= -16) - значит, на промежутке [-8,+8) функция у=-х²-16х+3 убывает.
Приходим к тому же выводу.
х+2007+2007+х=2008
2х=4014-2008
х=2006/2
х=1003