М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
sofiacat06
sofiacat06
05.06.2022 21:08 •  Алгебра

Двое рабочих, работая вместе, выполнили производственное за 12 ч.. за какое время может выполнить это каждый рабочий, работая самостоятельно, если один из них может это сделать на 7ч. быстрее другого.

👇
Ответ:
firstoneking1
firstoneking1
05.06.2022

I рабочий за 21 часов и II рабочий за 28 часов

Объяснение:

Объём задания примем за 1. Пусть I рабочий выполнить задание за х часов, и по условию, I рабочий выполнить задание на 7 часов быстрее чем II рабочий, то есть II рабочий выполнить задание за (х+7) часов.

Тогда производительность I рабочего за 1 час будет 1/х часть задания, а производительность II рабочего за 1 час будет 1/(х+7) часть задания. По условию оба рабочих работая вместе выполнили задание за 12 часов, то за 1 час они вместе выполнили 1/12 часть задания. Приравниваем данные за 1 час работы:

1/х + 1/(х+7) = 1/12   | ·12·x·(x+7)

12·(x+7) + 12·x = x·(x+7)

12·x+84+12·x=х²+7·x

х²–17·x–84=0

D= (–17)²–4·1·(–84) = 289+336 = 625 = 25²

х₁=(17+25)/2 = 42/2 = 21 часов время работы I рабочего

х₂=(17–25)/2 = –4<0 не подходит.

Тогда время работы II рабочего равна  

21 + 7 = 28 часов.

4,8(32 оценок)
Открыть все ответы
Ответ:
zakrevskaya989
zakrevskaya989
05.06.2022

Жылы математика, бір теорема болды есеп болып табылады дәлелдеді , басқа да теоремалар және жалпы қабылданған есептілігі: бұрын белгiленген есептілігі негізінде аксиомалары[ дереккөзі анықталмаған 295 күн ] . Басқаша айтқанда, теорема - бұл математикалық тұжырым, оның ақиқаттығы дәлелдеу арқылы анықталады [2] . Теорема - аксиомалардың логикалық нәтижесі . Математикалық теореманың дәлелі - бұл формальды жүйенің ережелеріне сәйкес келтірілген теореманың тұжырымының логикалық аргументі . Теореманың дәлелденуі көбінесе теорема тұжырымының ақиқаттығын дәлелдеу ретінде түсіндіріледі. Дәлелденетін теоремаларға қойылатын талапты ескере отырып, теорема ұғымы тәжірибелік сипаттағы ғылыми заң тұжырымдамасынан айырмашылығы түбегейлі дедуктивті болып табылады [3] .

4,6(48 оценок)
Ответ:
Зайчутка
Зайчутка
05.06.2022
1)При выполнении четырех арифметических действий (кроме деления на нуль) над рациональными числами всегда получаются рациональные числа.
2) Каждое рациональное число можно представить в виде бесконечной периодической десятичной дробиЭто бесконечная десятичная дробь, у которой начиная с некоторого десятичного знака повторяется одна и та же цифра или несколько цифр - период дроби. Например, 0,3333... = 0,(3)
1,057373... = 1,05(73)
3)Существуют стандартные обозначения для некоторых множеств. Например, − множество целых чисел; − множество рациональных чисел; − множество иррациональных чисел; − множество действительных чисел; − множество комплексных чисел.4)Это вместе взятые множества рациональных и иррациональных чисел, т.е. любое положительное число, отрицательное число или нуль. 
5)Действительные числа образуют совокупность элементов, обладающую следующими свойствами.     Если a и b - действительные числа (алгебраические, рациональные, целые, положительные целые), то таковыми же являются
иa + b и ab (замкнутость), (1)
a + b = b + a, ab = ba (коммутативность), (2)
a + (b + c) = (a + b) + c = a + b + c, a(bc) = (ab)c = abc (ассоциативность),  (3)
a * 1 = a (единица), (4)
a(b + c) = ab + ac (дистрибутивность),(5);
из a + c = b + c следует a = b, из ca = cb, , следует a = b (сокращение).  (6)
6)
7) Два числа, произведение которых равно 1, называются взаимно обратными.
8)   7-3 - числовое выражение,
(8+3,2)·5,4 - тоже числовое выражение, и они имеют смысл
3+:)(+)-+  не имеет смысла
9)Математическое выражение, составленное из чисел, скобок и знаков арифметических действий называется числовым выражением.
10)Если в числовом выражении появляются буквы - оно становится буквенным выражением
у+5, у-переменная величина
11)да например а+а+(а+а) причём а = 4
12)нет, потому что в нем нет букв
4 нельзя 
4х можно
13) Одночлен − это произведение чисел и степеней переменных с  
натуральными показателями.  

    Например:       13a^3 b^2;     13x^12 y^11;     2(a^4)^3 c^7 (−9)z^11 . 
14)Одночленом называется алгебраическое выражение, являющееся произведением букв и чисел.Эти буквы и числа называются множителями данного одночлена.Например, алгебраическое выражение ЗаЬс есть одночлен; его множителями являются число 3 и буквы а, Ь, с.
15)Одночлен – это произведение двух или нескольких сомножителей, каждый из которых либо число, либо буква, либо степень буквы. Например, 3 a 2 b 4 ,    b d 3 ,    – 17 a b c
16)  Число 0 называется нулевым одночленом.  
17)
4,4(72 оценок)
Это интересно:
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ