По определению,
Т.к. в обоих случаях нужно обосновать, что L=0, определение преобразуется в утверждение
2)
А значит, если взять (*),
. И правда:
(*) Очевидно, что для любого допустимого значения выражение
определено и конечно, и при этом натуральное число (как сумма неотрицательного целого числа и 1). (*)
А это и означает, что предел данной последовательности равен 0
4)
А значит, если взять (**),
. И правда:
(**) Очевидно, что для любого допустимого значения выражение
определено и конечно, и при этом натуральное число (как сумма неотрицательного целого числа и 1). (**)
А это и означает, что предел данной последовательности равен 0
___________________________
2) a=1. Тогда
4)
___________________________
Обозначения и некоторые св-ва: {x} - дробная часть числа x, [x] - целая часть числа x.
Нахождение области определения функции в данном случае сводится к решению неравенства. Так как сама функция представляет собой радикал четной степени, то подкоренное выражение должно быть неотрицательным. То есть:
(2-x)*(x^2 - 9) ⩾ 0.
Для удобства заменим (2-х) на (х-2), изменим знак неравенства на противоположный, и разложим x^2 - 9 = (x-3)*(x+3). Получаем:
(x-2)*(x-3)*(x+3) ⩽ 0.
Это неравенство решаем методом интервалов: разбиваем числовую прямую нулями на интервалы и смотрим значение выражения на каждом из них. Выбираем отрицательные и записываем ответ. Решение во вложении.
ответ: D(y) = (-∞; -3]⋃[2; 3].
Если y=3,5 , то х=4
Если y=2, то х=7.
ответ: (4;3,5)^(7;2)