Если умножать 56 на числа от 1 до 20, к примеру, то в этом интервале только числа с 2 до 17 дают результат, состоящий из 3 цифр (от 112 до 952). Всего таких результатов 16. Всего в пределах от 100 до 999 есть 900 чисел. Таким образом, вероятность составляет 16/900 или 4/225 или 1,78% (0,017778)
Определение: Квадратным уравнением называется уравнение вида ax²+bx+c,где x - переменная, a, b, c - постоянные (числовые) коэффициенты.
В общем случае решение квадратных уравнений сводится к нахождению дискриминанта (математики ввели себе такой термин для упрощения решения квадратных уравнений). По мимо этого, корни можно найти по теореме Виета, но вот доказать, имеет ли уравнение корни или нет по ней, к сожалению, нельзя.
Формула дискриминанта: D=b²-4ac, откуда a,b, с - это коэффициенты из уравнения.
Если D>0 (положительный), то уравнение имеет два корня. Если D=0, то один корень. Если D<0 (отрицательный), то уравнение корней не имеет.
Поэтому всё задание сводится к нахождению дискриминанта:
x²-10x+27=0
a=1 (если возле переменной не стоит никакое число (например, 2, 3, -10 и т.д.), то подразумевается, что там спряталась единица) b=-10 c=27
Подставим эти коэффициенты в формулу дискриминанта. D=(-10)²-4×27×1=100-108=-8 (число -8 отрицательное, поэтому уравнение корней не имеет)
x²+x+1=0 a=1, b=1, c=1 D=b²-4ac=1²-4×1×1=1-4=-3 (-3 отрицательное число, поэтому уравнение корней не имеет)
1) пусть х км составляет весь путь велосипедиста. 2) тогда первую половину пути х/2 велосипедист проехал со скоростью х/2 : 3 = х : 6 км/ч. 3) вторую половину пути х/2 велосипедист проехал со скоростью х/2 : 2,5 = х : 5 км/ч. 4) по условию на втором участке скорость велосипедиста была больше на 3 км/ч, чем на первом, тогда можно записать выражение: х : 5 - х : 6 = 3. 5) решаем уравнение: х : 5 - х : 6 = 3, (6х - 5х)/30 = 3, х/30 = 3, х = 3 * 30, х = 90. 6) значит, х = 90 км проехал велосипедист. ответ: 90 км.