Объяснение:
Рассматривая дробное уравнение, мы положим, что 9у4 – 1 <> 0, так как знаменатель не может быть равен нулю. Вычислим при каких У это неравенство выполнимо.
9у4 = 1.
У = √1/3, при данных значениях "У" знаменатель будет равен 0, что недопустимо.
То есть У <> √1/3.
Теперь рассмотрим числитель, который согласно уравнению должен принимать нулевые значения, чтобы выполнялось равенство.
3у3 – 12у2 – у + 4 = 0.
Преобразуем выражение.
3у2 * (у – 4) – (у – 4) = 0.
Вынесем общий множитель (у – 4) за скобку.
(у – 4) * (3у2 - 1) = 0.
Таким образом, получаем 2 уравнения, которые по отдельности должны быть равны 0 для выполнения равенства.
1) У – 4 = 0.
У = 4.
2) (3у2 - 1) = 0.
3у2 = 1.
у2 = 1/3.
У = √1/3, этот корень не подходит по условиям У <> √1/3.
Остается 1 корень у = 4.
ответ: у = 4.
1) 96град = 96*П/180 = 8П/15 если угол был отрицательным, то -8П/15
2) 3П/10 = 3П/10*180/П = 54 град
3) 290 град - угол 4 четверти (sin<0)
70 град - угод 1четверти (cos>0)
100 град - угод 2 четверти (sin>0, cos<0, следовательно tg<0)
т.е "-" * "+" * "-" = "+" выражение >0
4) если cos<0 и сtg = cos/sin >0, значит sin<0
cos<0 и sin<0 в 3 четверти
5) -10П/7 = -10*180/7 = -257.14...
2 четверть
6) 7 + sin a
Наименьшее значение синуса =-1
7-1 = 6
7) кубич корень из (2sin(-1125) = кубич корень из [2sin(-360*3 - 45)] =
= кубич корень из [2sin(- 45)] = кубич корень из [-2*(2)^0.5/2] =
= кубич корень из [-(2)^0.5] = -2^(1/6)
б) нет. Понятно, что знаменатель прогрессии - нецелое число. Пусть знаменатель прогрессии - число p/q (p, q - взаимно просты, p>q). Тогда члены прогрессии - числа вида
a, ap/q, ap^2/q^2, ap^3/q^3, ap^4/q^4.
Т.к. (p, q) = 1, то а делится на q^4, откуда q = 2, 3, 4 или 5 (иначе a не меньше 6^4 = 1296 > 740).
С другой стороны, a/q^4 - некоторое натуральное число, поэтому из того, что p^4 * a/q^4 < 740, следует, что p^4 < 740, т.е. p = 3, 4, 5.
Наименьшее значение знаменателя в таком случае 5/4. Но тогда пятый член прогрессии окажется не меньше, чем 510 * (5/4)^4 > 740. Противоречие.