ответ: 60 см
Объяснение:
Пусть гипотенуза прямоугольного треугольника х см, ( х>16) тогда согласно условия задачи, один из катетов равен (х-16) см, а другой катет равен (х-2) см.
По Теореме Пифагора следует:
х²=(х-16)²+(х-2)²
х²=х²-32х+256+х²-4х+4
х²-х²+32х-256-х²+4х-4=0
-х²+36х-260=0 (* на (-1)
х²-36х+260=0
х1,2=(36+-D)/2
D=√(36²-4*1*260)=√(1296-1040)=√256=16
х1,2=(36±16)/2
х1=(36+16)/2
х1=26
х2=(36-16)/2=10 - не подходит, так как х>16
Тогда катеты равны 26-16=10 26-2=24
Периметр это есть сумма всех трех сторон:
Р=26+10+24=60 см
ответ : 60 см
a) 10 < a+2b < 17.
б) 7 < 3a - b < 18.
в) 4/5 < а/b < 2 1/3.
Объяснение:
a) a + 2b
1)По условию
3 < b < 5, тогда
2•3 < 2b < 2•5
6 < 2b < 10.
2) Сложим неравенства
4 < a < 7 и
6 < 2b < 10. Получим
4+6 < a+2b < 7+10
10 < a+2b < 17.
б) 3a - b = 3•a + (-1)•b.
1) По условию
4 < a < 7, тогда
3•4 < 3•a < 3•7
12 < 3a < 21.
2) По условию
3 < b < 5, тогда
-1•3 > - b < -1•5
- 3 > - b > - 5
-5 < - b < - 3.
3) Сложим неравенства
12 < 3a < 21 и
-5 < - b < - 3, получим
12-5 < 3а - b < 21 - 3
7 < 3a - b < 18.
в) a\b = а•1/b.
1) По условию
3 < b < 5, тогда
1/3 > 1/b > 1/5
1/5 < 1/b < 1/3.
2) Умножим почленно неравенства
4 < a < 7 и
1/5 < 1/b < 1/3, получим
4•1/5 < а/b < 7•1/3
4/5 < а/b < 2 1/3.