ответ:
r 2+ 5-
2 x
−1 r
y2 =a
−5 r
рис. 5:
при a = −1 и a = −5 графики имеют 2 общие точки, при
остальных значениях a одну общую точку.
ответ: a ∈ (−5; −1).
1.12. (егэ) найдите число корней уравнения
6x2 + 2x3 − 18x + n = 0 в зависимости от параметра n.
решение.
перепишем уравнение в виде
y 6
2x3 + 6x2 − 18x = −n. r 54 y1
аналогично 1.11 построим на
одном чертеже графики функций
y2 = −n и схематичный график y2 =−n
y1 = 2x3 +6x2 −18x для этого найдем
производную: y1 = 6x2 +12x−18 и 0 1 -
критические точки x1 = −3 и x2 = 1. −3 −10 r x
исследуя знаки производной, нетруд-
но убедиться, что x1 = −3 точка
максимума, а x2 = 1 точка ми-
нимума, причем ymax (−3) = 54; рис. 6:
ymin (1) = −10. функция y1 возрастает на интервалах (−∞; −3)
и (1; +∞) и убывает на интервале (−3; 1).
из рис. 6 видно, что исходное уравнение имеет три корня при
−10 < −n < 54 или −54 < n < 10; два корня при n = −54 и
n = 10; один корень при n < −54 и n > 10.
π + 2πk; ±π/3 + 2πk, k ∈ Z.
Объяснение:
1. Область допустимых значений:
1 - cosx ≠ 0;
cosx ≠ 1;
x ≠ 2πk, k ∈ Z.
2. Умножим обе части уравнения на (1 - cosx):
sin2x/(1 - cosx) = 2sinx;
sin2x = 2sinx(1 - cosx).
3. Раскроем скобки и приведем подобные члены:
2sinx * cosx = 2sinx - 2sinx * cosx;
2sinx * cosx - 2sinx + 2sinx * cosx = 0;
4sinx * cosx - 2sinx = 0;
2sinx(2cosx - 1) = 0.
4. Приравняем множители к нулю:
[sinx = 0;
[2cosx - 1 = 0;
[sinx = 0;
[2cosx = 1;
[sinx = 0;
[cosx = 1/2;
[x = 2πk ∉ ОДЗ;
[x = π + 2πk;
[x = ±π/3 + 2πk;
[x = π + 2πk, k ∈ Z;
[x = ±π/3 + 2πk, k ∈ Z.
ответ: π + 2πk; ±π/3 + 2πk, k ∈ Z