Переносим куб из степени вперед по свойству логарифма: log^(5-x) по 2 - 6 log (5-x) по 2 + 9 Вводим функцию, у = log^(5-x) по 2 - 6 log (5-x) по 2 + 9 Приравниваем к нулю = log^(5-x) по 2 - 6 log (5-x) по 2 + 9 = 0 теперь вводим новую переменную => log (5-x) по 2 = t переписываем с t = t^2 - 6t + 9 = 0 Решаем уравнение: Дискриминант: 36 - 36 = 0 t = 6+0/2 => t = 3 Приравниваем: log (5-x) по 2 = 3 находим х 2^3 = 5 - х 5 - х = 8 - х = 3 х = - 3 Теперь строим координатный луч и отмечаем на нем точку х = - 3 (точка закрашенная, т. к. меньше равно) И закрашиваем промежуток, которому принадлежат значения х. ответ: х принадлежит (- бесконечности; -3]
- 16^2-26^0 = -16^2-26^0= -16^2-26^0= 6^11-8 - 16^2-26^0 =
(6^4)^2 6^4*2 6^8
= 6^3 - 16^2 - 26^0 = 216-256-1=-41