Алгоритм решения стандартен для подобных задач. 1)Находим производную 2)Там, где производная больше 0, там функция возрастает, где меньше 0, там убывает. Итак, найдём производную:
y' = 3x^2 - 2bx + 3 Функция возрастает на всей числовой прямой, следовательно, чтобы найти значение b, необходим ответить на следующий вопрос: при каком значении b неравенство 3x^2 - 2bx + 3 > 0 выполняется при любом x. Это задача несколько иного плана, останавливаться на ней не буду здесь, решив её, мы получим нужные значения b. Мог бы остановиться на этой задаче, но места не хватит здесь, это задача повышенного уровня сложности и имеет довольно длинное обоснование.
в данном методе нужно сложить левые части обоих уравнений и приравнять к сумме правых частей:
(5х - 4у) + (7х + 4у) = 22 + 2, 5х - 4у + 7х + 4у = 24 - как видим -4у и +4у сокращаются, так как их сумма равна 0 и получаем упрощенное уравнение, 5х + 7х = 24, 12х = 24, х = 2, теперь из любого из уравнений выделяем у: если из 1 ур-ия: у = (5х - 22) : 4 = (5*2 - 22) : 4 = -3, или если из 2 ур-ия: у = (2 - 7х) : 4 = (2 - 7*2) : 4 = -3 (как видим результат у одинаков).
1)x+y/y+y/x-y=x*x/y(x-y)
2)(x/y) / (x*x/y(x-y)=x-y/x