М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Рапиро123
Рапиро123
18.04.2023 20:31 •  Алгебра

Велосипедист выехал из пункта а в пункт в. расстояние между пунктами 135 км. на следующий день он выехал обратно со скоростью на 6км/ч больше, чем на пути туда. сделал остановку на 6 часов. время затраченное на путь обратно равно
времени, затраченному на путь туда. с какой скоростью велосипедист ехал обратно?

👇
Ответ:
alvd1986
alvd1986
18.04.2023

х км/ч скорость велосипедиста из А в В

х+6 км/ч -скорость велосипедиста из В в А

По условию известно, что он сделал останвоку на 6 ч.

135/х - 135/(х+6) = 6

135(х+6) - 135х = 6х(х+6)

6х² + 36х - 810 = 0

х² + 6х - 135 = 0

Д = 36 + 540 = 576

х = (-6+24)/2=9

9 км/ч скорость велосипедиста из А в В

9+6 = 15 км/ч -скорость велосипедиста из В в А

ответ. 15 км/ч

4,4(17 оценок)
Открыть все ответы
Ответ:
karolka10201020
karolka10201020
18.04.2023

a) функция - композиция  дробно-рациональной

t(x)=1/(x-1)  и показательной y=7^(t(x))

t(x)=1/(x-1) - непрерывна при х∈(-∞;1) U(1;+∞)  

y=7^(t(x)) - непрерывна при t∈(-∞;+∞)

Значит и данная функция непрерывна при x∈(-∞;1) U(1;+∞)  

Проверяем непрерывность в точке x=1

Находим предел слева:  lim (x→1-0)7^(1/(x-1))=0

x→1-0 тогда (1/(x-1))→-∞

7^(-∞)→0

Находим предел справа:lim (x→1+0)7^(1/(x-1))=+∞

x→1+0 тогда (1/(x-1))→+∞

7^(+∞)→+∞

x=1- точка разрыва второго рода ( один из односторонних пределов - бесконечный)

б)  y=x²  непрерывна на (-∞;+∞), а потому непрерывна и на [0;1]

y=2x+3 непрерывна на (-∞;+∞), а потому непрерывна и на (1;2]

Значит, надо исследовать непрерывность в точке х=1

Находим предел слева:  lim (x→1-0)x²=(1-0)²=1

Находим предел справа:lim (x→1+0)7=2·1+3=5

Предел слева не равен пределу справа.

Значит предел функции в точке не существует и потому

x=1- точка разрыва первого рода ( пределы конечны, но не равны, есть конечный скачок)

4,7(27 оценок)
Ответ:
teunov
teunov
18.04.2023

a) функция - композиция  дробно-рациональной

t(x)=1/(x-1)  и показательной y=7^(t(x))

t(x)=1/(x-1) - непрерывна при х∈(-∞;1) U(1;+∞)  

y=7^(t(x)) - непрерывна при t∈(-∞;+∞)

Значит и данная функция непрерывна при x∈(-∞;1) U(1;+∞)  

Проверяем непрерывность в точке x=1

Находим предел слева:  lim (x→1-0)7^(1/(x-1))=0

x→1-0 тогда (1/(x-1))→-∞

7^(-∞)→0

Находим предел справа:lim (x→1+0)7^(1/(x-1))=+∞

x→1+0 тогда (1/(x-1))→+∞

7^(+∞)→+∞

x=1- точка разрыва второго рода ( один из односторонних пределов - бесконечный)

б)  y=x²  непрерывна на (-∞;+∞), а потому непрерывна и на [0;1]

y=2x+3 непрерывна на (-∞;+∞), а потому непрерывна и на (1;2]

Значит, надо исследовать непрерывность в точке х=1

Находим предел слева:  lim (x→1-0)x²=(1-0)²=1

Находим предел справа:lim (x→1+0)7=2·1+3=5

Предел слева не равен пределу справа.

Значит предел функции в точке не существует и потому

x=1- точка разрыва первого рода ( пределы конечны, но не равны, есть конечный скачок)

4,6(61 оценок)
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ