М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
ДмитрийJ
ДмитрийJ
01.08.2022 14:04 •  Алгебра

Даны точки м (-4,1), n (-2.2)и р (1,3). определите координаты т. о если mn=po

👇
Ответ:
keggen
keggen
01.08.2022
MN = (-4: 1) - (-2; 2) = (-2; -1)
PO = (1; 3) - (-2; -1) = (3; 4)
O (3; 4)
4,8(50 оценок)
Открыть все ответы
Ответ:

Пусть это число А, так как оно окончивается цифрами 17 и делится на 17 (17 делится на 17), то представив число А в виде A=100B+17, где B - некоторое неотрицательное целое число. Видим что A-17=100B+17-17=100B должно делится на 17, так как 100 на 17 не делится, то число В должно делится на 17. При данных условиях оно должно быть наименьшим, и сумма цифр должна ровнять 17-1-7=9

 

Так как сумма цифр числа В равна 9, то оно делится на 9(а так как оно делится еще на 17), НОК(9, 17)=9*17=153, значит число В равно 153, а данное число равно

15317

 

4,5(18 оценок)
Ответ:
мейрбек2
мейрбек2
01.08.2022
1) \left \{ {{x+y=4} \atop {x-y=2}} \right.
Просто сложим два уравнения.
Получается:
x+y+x-y=4+2
2x=6
x=3.
Подставляем во второе уравнение.
3-y=2 очевидно, что y=1. Упор.пара: (3,1)
2)
\left \{ {{x+y=3} \atop {3y-x=1}} \right.
То же самое.
x+y+3y-x=3+1
4y=4
y=1
Подставляем в первое уравнение.
x+1=3 => x=2. (2,1) - упор.пара (если все строго).
3) 
\left \{ {{|x|+y=5} \atop {x+4y=5}} \right.
Тут на самом деле несколько вариантов элементарного решения. Я использую самый простой (но не самый короткий).
Модуль дает нам этакую мини-системку для первого уравнения, в одном ур. x, в другом -x. 
Типа:
\left \{ {{ \left \{ {{x=5-y} \atop {x=y-5}} \right.} \atop {x+4y=5}} \right.
Только маленькая скобка не фигурная, а квадратная.
Решается так - сначала подставляешь в систему первое уравнение, затем второе (по очереди).
3.1) Здесь:
\left \{ {{x=5-y} \atop {x+4y=5}} \right.
Решаем подстановкой.
5-y+4y=5
3y=0
y=0 => x=5. (5,0) ответ.
3.2) Здесь:
\left \{ {{x=y-5} \atop {x+4y=5}} \right.
То же самое.
y-5+4y=5
5y=10
y=2.

x+8=5 => x=-3
(-3,2) - ответ.
4,7(40 оценок)
Это интересно:
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ