Дано: ∆АВС
EF║AB; PS║BC; KM║AC;
r₁; r₂; r₃ - радиусы вписанных окружностей в ∆KPO; ∆OFM; ∆EOS.
Найти R - радиус окружности, вписанной в ∆АВС
Решение.
1)
Пусть
а - основание ∆KPO;
b - основание ∆EOS.
c - основание ∆OFM.
Но
а = КО = АЕ, как противоположные стороны параллелограмма АКОЕ.
с = ОМ = SC, как противоположные стороны параллелограмма SOMC.
Получаем
(a+b+c) - основание АС у ∆АВС.
2)
Все три внутренних треугольника подобны между собой и подобны данному ∆АВС, т.к. их соответственные стороны параллельны.
В в подобных треугольниках соответствующие стороны и все соответствующие линии пропорциональны.
Из подобия следуют три пропорциональности:
а/(a+b+c)=r₁/R;
b/(a+b+c)=r₃/R;
c/(a+b+c)=r₂/R;
Сложим эти пропорции.
а/(a+b+c) + b/(a+b+c) + c/(a+b+c)= r₁/R + r₃/R + r₂/R;
(a+b+c)/(a+b+c) = (r₁+r₂+r₃)/R;
1 = (r₁+r₂+r₃)/R;
R = (r₁+r₂+r₃).
ответ: R = r₁+r₂+r₃.
ответ: x1=π/4+k*π, где k∈Z; x2=1/2*(-1)^(n)*arcsin(0,6)+π*n/2, где n∈Z.
Объяснение:
Перепишем уравнение в виде 2*cos²(x)+2*sin(2*x)-3=0. Так как 2*cos²(x)=1+cos(2*x), то данное уравнение можно записать в виде: 1+cos(2*x)+2*sin(2*x)-3=0, или 2*sin(2*x)+cos(2*x)-2=0. Положим 2*x=t, тогда данное уравнение перепишется в виде: 2*sin(t)+cos(t)-2=0. А так как cos(t)=√[1-sin²(t)], то его можно записать и так: √[1-sin²(t)]=2-2*sin(t), или √[1-sin²(t)]=2*[1-sin(t)]. Возводя обе части в квадрат и приводя подобные члены, приходим к уравнению 5*sin²(t)-8*sin(t)+3=0. Полагая u=sin(t), получаем квадратное уравнение 5*u²-8*u+3=0. Оно имеет корни u1=1 и u2=0,6. Если u1=sin(t1)=1, то t1=π/2+2*k*π, где k∈Z. Тогда x1=t1/2=π/4+k*π, где k∈Z. Если же u1=sin(t2)=0,6, то t2=(-1)^(n)*arcsin(0,6)+π*n, где n∈Z. Тогда x2=t2/2=1/2*(-1)^(n)*arcsin(0,6)+π*n/2, где n∈Z.