Объяснение:
Участвовало всего: 76 человек.
В обеих олимпиадах: 15 человек.
Следовательно, из 76 человек
15 - дважды принимали участие
76-15 = 61 чел. - только 1 раз
Пусть,
х - число участников по математике
у - число участников по физике
Причем, очевидно что без учета 15 принимавших участие в обеих олимпиадах имеем:
(х-15)+(у-15)=61
х+у-30=61
х+у=91
Выразим х и у по отдельности:
х = 91-у
у= 91-х
Т.к. х, у - это число участников, то эти числа должны быть целыми.
И если предположить, что допустим
х - меньше 46, то
при х < 46 этот х может быть равен 45, 44 и т.д
Поэтому при целых значениях
х < 46, равнозначно неравенству х ≤ 45.
Т.е. при х ≤ 45:
х = 91 - у
91 - у ≤ 45
91 - 45 ≤ у
у ≥ 91 - 45
у ≥ 46
А при у < 46, (при у ≤ 45)
у = 91 - х
91 - х ≤ 45
х ≥ 46
Как мы видим, при любых значениях х или у одно из них обязательно будет равно или больше 46
А значит, в какой-то олимпиаде обязательно приняли участие не менее 46 человек.
Ч.Т.Д.
Первое уравнение - график окружности с центром в точке (0;0), то есть в начале координат, радиусом 3.
Второе уравнение y=x^2+p, график параболы, ветви которой направлены вверх, и которая двигается по оси Oy вверх или вниз(но не влево и вправо) в зависимости от значения p. Парабола будет иметь с графиком окружности 3 точки пересечения (а значит и система будет иметь три решения), когда вершина параболы будет лежать на окружности, а две ветви параболы будут пересекать окружность в 2 точках. Вершина параболы должно лежать в точке (0; -3) чтобы это выполнялось, а значит p=-3
P.S. если что-то не понятно, напишите.
- посторонний корень (не удовлетворяет ОДЗ)
ОДЗ: x>0; x-6>0, x>6
ответ: x=8
2)
1)
2)
3)