Дано неравенство: 6x² − x - 5 > 0.
Находим корни квадратного трёхчлена: 6x² − x - 5 = 0.
Квадратное уравнение, решаем относительно x:
Ищем дискриминант:
D=(-1)^2-4*6*(-5)=1-4*6*(-5)=1-24*(-5)=1-(-24*5)=1-(-120)=1+120=121;
Дискриминант больше 0, уравнение имеет 2 корня:
x1=(√121-(-1))/(2*6)=(11-(-1))/(2*6)=(11+1)/(2*6)=12/(2*6)=12/12=1;
x2=(-√121-(-1))/(2*6)=(-11-(-1))/(2*6)=(-11+1)/(2*6)=-10/(2*6)=-10/12=-(5/6)≈-0.833333.
откуда x1 = 1 и x2 = -(5/6).
Раскладываем левую часть неравенства на множители: 6(x – 1) (x +(5/6)) > 0. Точки -5/6 и 1 разбивают ось X на три промежутка:
ОО⟶Х
-5/6 1
Точки -5/6 и 1 выколоты. Это связано с тем, что решаемое неравенство — строгое (так что x не может равняться -5/6 или 1). Далее определяем знаки левой части неравенства на каждом из промежутков
+ – +
ОО⟶Х
-5/6 1
Получаем: x < -5/6 или x > 1.
x²-x-2=0
x1+x2=1 U x1*x2=-2⇒x1=-1 U x2=2
s=S(от -1 до 2)(2+x-x²)dx=2x+x²/2-x³/3)(от -1 до 2)=4+2-8/3+2-1/2-1/3=8/3,5=4,5кв ед