М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
09Катя99
09Катя99
27.10.2020 10:48 •  Алгебра

Варифметической прогрессии девятый член больше четвертого члена на 10 и больше третьего члена в 5 раз. найдите сумму всех членов этой прогрессии, начиная с двухсотого члена и заканчивая трехсотым членом. ..

👇
Ответ:
evstratenko001
evstratenko001
27.10.2020
A9-a4=10⇒a1+8d-a1-3d=10⇒5d=10⇒d=2
a9=5a3=a1+8d=5(a1+2d)⇒a1+8d=5a1+10d⇒4a1=-2d=-4⇒a1=-1
S=S300-S199=(-2+299*2)*300/2 -(-2+198*2)*199/2=
=596*150-197*199=89400-39203=50197

S300=(2a1+299d)*300/2=(-1*2+299*2)*150=2(-1+299)*150=2*298*150=596*150=89400
S199=(-1*2+198*2)*199/2=2(-1+198)*199/2=197*199=39203
S=89400-39203=50197
4,4(52 оценок)
Открыть все ответы
Ответ:
дашуся4
дашуся4
27.10.2020
По формуле классической вероятности:
p=m/n
n=90 ( количество двузначных чисел)

Числа делящиеся на 3:
12; 15;... 99 - таких чисел 30
Можно найти их количество по формуле n-го члена арифметической прогрессии
a_n=a_1+d(n-1)
a₁=12
d=15-12=3
99=12+3·(n-1)    ⇒87=3(n-1)    n-1=29    n=30

Числа делящиеся на 5:
10; 15;20; 25; 30;...; 95 - таких чисел 30
Можно найти их количество по формуле n-го члена арифметической прогрессии
a_n=a_1+d(n-1)
a₁=10
d=15-10=5
95=10+5·(n-1)    ⇒85=5(n-1)    n-1=19    n=20

Чисел, которые одновременно делятся и на 3 и на 5 всего 6:
15;30;45;60;75 и 90

m=30+20-6=44

p=44/90=22/45
4,6(82 оценок)
Ответ:
IDebil
IDebil
27.10.2020
По формуле классической вероятности:
p=m/n
n=90 ( количество двузначных чисел)

Числа делящиеся на 3:
12; 15;... 99 - таких чисел 30
Можно найти их количество по формуле n-го члена арифметической прогрессии
a_n=a_1+d(n-1)
a₁=12
d=15-12=3
99=12+3·(n-1)    ⇒87=3(n-1)    n-1=29    n=30

Числа делящиеся на 5:
10; 15;20; 25; 30;...; 95 - таких чисел 30
Можно найти их количество по формуле n-го члена арифметической прогрессии
a_n=a_1+d(n-1)
a₁=10
d=15-10=5
95=10+5·(n-1)    ⇒85=5(n-1)    n-1=19    n=20

Чисел, которые одновременно делятся и на 3 и на 5 всего 6:
15;30;45;60;75 и 90

m=30+20-6=44

p=44/90=22/45
4,7(61 оценок)
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ