Даны вершины треугольника А(-1;2;1),В(3;0;-4),С(2;0;0).
Решение имеет 2 варианта (надо было оговорить в задании - какой нужен).
1) По теореме косинусов. Для этого находим длины сторон треугольника. Квадрат Сторона
AB = √((xB-xA)²+(yB-yA)²+(zB-zA)²) = 16 4 25 45 6,708203932
BC = √((xC-xB)²+(yC-yB)²+(zC-zB)²) = 1 0 16 17 4,123105626
AC = √((xC-xA)²+(yC-yA)²+(zC-zA)²) = 9 4 1 14 3,741657387.
cos A = (b² + c² - a²)/(2bc) = (14+45-17)/(2√14*√45) = 0,836660027.
cos B = (a² + c² - b²)/(2ac) = (17+45-14)/(2√17*√45) = 0,867721831,
cos C = (a² + b² - c²)/(2ab) = (17+14-45)/(2√17*√14) = -0,453742606.
Косинус угла С отрицательный, значит, этот угол тупой.
ответ: треугольник тупоугольный
2) По векторам.
AB = (3-(-1); 0-2; -4-1) = (4; -2; -5). Модуль равен √45.
BC = (2-3; 0-0; 0-(-4)) = (-1; 0; 4). Модуль равен √17.
AC = (2-(-1); 0-2; 0-1) = (3; -2; -1). Модуль равен √14.
Векторы ВА, СВ и СА имеют обратные знаки координат).
cos A = (4*3 + (-2)*(-2) + (-5)*(-1))/(√45*√14) = 21/√630 = 0,836660027.
cos B = (-4*(-1) + 2*0 + 5*4)/(√45*√17) = 24/√765 = 0,867721831.
cos C = (1*(-3) + 0*2 + (-4)*1)/(√17*√14) = -7/√238 = -0,453742606.
Вывод о виде треугольника сохраняется, как и в первом варианте.
.
.
f(x) = 7 - 6x - 3x²
Найдём производную f'(x)
f'(x) = -6 - 6x
f'(x) = 0
-6 - 6x = 0
x = -1
f'(x) ≥ 0 при x∈(-∞, -1] и f'(x) < 0 при x∈(-1, +∞) следовательно x = -1 - максимум.
ответ: максимум в точке x = -1
f(x) = x⁴ - 2x² + 1
f'(x) = 4x³ - 4x
f'(x) = 0
4x³ - 4x = 0
4x(x² - 1) = 0
x = -1, x = 0, x = 1
При x ∈ (-∞, -1) f'(x) < 0 и при x∈[-1, 0] f'(x) ≥ 0 следовательно x = -1 - минимум
При x∈[-1, 0] f'(x) ≥ 0 и при x∈(0, 1) f'(x) < 0 отсюда x = 0 - максимум
При x∈(0, 1) f'(x) < 0 и при x∈[1, +∞) f'(x) ≥ 0 отсюда следует, что x = 1 - минимум
ответ: минимум в точках x = -1 и x = 1. Максимум в точке x = 0
Так как логарифмическая функция с основанием 0,1<1 уюывает, то большему значению функции соответствует меньшее значение аргумента.
Учитывая область определения данного неравенства (x+1)²>0, составим систему неравенств:
ответ (-2;-1)υ(-1;0)