(x+2)^2(x+5) / (x^2+5)(x+10) < 0 Дробь меньше нуля, когда числитель (ч) и знаменатель (з) разных знаков: 1) Первая система: (x+2)^2(x+5) >0 (x^2+5)(x+10) <0 Решаем 1-ое нер-во: первый множитель - квадрат, он всегда неотрицательный, значит для того, чтобы произведение было положительным, надо чтобы все множители были положительными: x+5>0, x>-5 Решаем 2-ое нер-во: первый множитель всегда положительный, значит для того, чтобы произведение было отрицательным, надо чтобы второй множитель был отрицательным: x+10<0, x<-10 Получается: x>-5 и x<-10 - нет пересечений (общих решений). Данная система не имеет решения. 2) Вторая система: (x+2)^2(x+5) <0 (x^2+5)(x+10) >0 1-ое нер-во: первый множитель положительный, значит 2-ой д.б. отрицательным: x+5<0, x<-5. 2-ое нер-во: первый множитель положительный, значит и 2-ой д.б. положительным: x+10>0, x>-10. Общее решение системы: -10<x<-5 Наибольшее целое значение: x=-6
(x+2)^2(x+5) / (x^2+5)(x+10) < 0 Дробь меньше нуля, когда числитель (ч) и знаменатель (з) разных знаков: 1) Первая система: (x+2)^2(x+5) >0 (x^2+5)(x+10) <0 Решаем 1-ое нер-во: первый множитель - квадрат, он всегда неотрицательный, значит для того, чтобы произведение было положительным, надо чтобы все множители были положительными: x+5>0, x>-5 Решаем 2-ое нер-во: первый множитель всегда положительный, значит для того, чтобы произведение было отрицательным, надо чтобы второй множитель был отрицательным: x+10<0, x<-10 Получается: x>-5 и x<-10 - нет пересечений (общих решений). Данная система не имеет решения. 2) Вторая система: (x+2)^2(x+5) <0 (x^2+5)(x+10) >0 1-ое нер-во: первый множитель положительный, значит 2-ой д.б. отрицательным: x+5<0, x<-5. 2-ое нер-во: первый множитель положительный, значит и 2-ой д.б. положительным: x+10>0, x>-10. Общее решение системы: -10<x<-5 Наибольшее целое значение: x=-6
1) ( 25/9 ) ^ ( X + 1 ) = ( ( 3/5 ) ^ ( - 2 ) ) ^ ( X + 1 ) = ( 3/5 ) ^ ( - 2X - 2 )
2) ( √ 3/5) ^ ( - X + 1 ) = ( 3/5 ^ 1/2 ) ^ ( - X + 1 ) = ( 3/5 ) ^ ( - 0,5X + 0,5 )
3) ( 3/5 )^ ( - 2X - 2 ) * ( 3/5) ^ ( - 0,5X + 0,5 ) = ( 3/5 ) ^ ( - 2,5X - 1,5 )
4) ( √ 5/3) ^ X = ( 3/5 ^ ( - 1/2)) ^ X = ( 3/5 ) ^ ( - 0,5X )
( 3/5) ^ ( - 2,5X - 1,5) ≤ ( 3/5 ) ^ ( - 0,5X )
- 2,5X - 1,5 ≤ - 0,5X
- 2X ≤ 1,5
X ≤ ( - 0,75 )
ответ Х ∈ ( - бесконечность ; - 0,75 ]