Пусть первое число равно n, тогда последнее равно n+8. Сумма всех чисел S=9n+1+2+...+8. S=9n+8⋅92=9n+36 - делится на 9 (достаточно и необходимое условие на данное выражение). По условию S=a1020304, где a - некоторое целое число (возможно 0), написанное в десятичном виде. Сумма цифр, кроме a, равна 1+2+3+4=10. По признаку делимости на 9, сумма цифр должна делится на 9. Следовательно, сумма цифр S не меньше 18, а сумма цифр a не меньше 8. Пусть a=8⇒S=81020304 S=81020304=9n+36=9(n+4), n+4=9002256⇔n=9002252. Понятно, что если a будет состоять из двух цифр или больше, то S будет больше. Получили искомое наименьшее число.
Понятно, что в больших коробках и в маленьких коробках количество книг одинаковое и равно половине от общего количества книг (примем за Х). Неодинаково количество больших и маленьких коробок. Пусть больших коробок было А штук, а меленьких В штук. Тогда 24*А - количество книг в больших коробках, 15*В - количество книг в маленьких коробках. И там, и там половина от общего количества книг (по условию). То есть, 24*А = 15*В = Х/2. Мы знаем, что больших коробок на 3 меньше, значит А - 3 = В. Подставим это значение В в наше первое уравнение: 24А = 15(А-3) 24А = 15А-45 А = 5 - столько было больших коробок, а книг в них, соответственно, 120 (24 * 5). Маленьких коробок было 8 (5 + 3), и книг в них тоже 120. Следовательно, всего книг 120 * 2 = 240. ответ: 240 книг.
так как