М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
DashaP2006
DashaP2006
11.11.2021 06:53 •  Алгебра

Найдите координаты точки пересечения графиков функций: y=-3x+0,2 и y=x-1

👇
Ответ:
nik255377866689
nik255377866689
11.11.2021
-3x + 0.2 = x - 1
-3x - x = -1 - 0.2
-4x = -1.2
x = -1.2 : (-4)
x = 0.3
y = 0.3 - 1 = - 0.7

(0.3, -0.7)
4,8(95 оценок)
Открыть все ответы
Ответ:
mannanova0202
mannanova0202
11.11.2021
Это задача на наибольшее(наименьшее) значение функции. План наших действий:
1) ищем производную
2) приравниваем её к нулю, решаем получившееся уравнение
3) смотрим: какие корни попали в указанный промежуток 
4) вычисляем значения данной функции в этих корнях и на концах промежутка.
5) пишем ответ 
начали?
1) y' = 2Сosx + 24/π
2) 2Сosx + 24/π = 0
2Сosx -= - 24/π
Сosx  = - 12/π
нет решений
3) решений нет, значит, в функцию подставим концы промежутка и найдём из ответов наибольшее значение.
4) а) х = -5π/6
у = 2Sin(-5π/6) +24*(-5π/6)/π + 6 = -2*1/2 - 20 +6 = -1 -20 +6 = -13
     б) х = 0
у = 0+0 +6 = 6
ответ: max y = 0
4,8(57 оценок)
Ответ:

3; \quad 10; \quad 3;

Объяснение:

6) Так как произведение корней принимает положительное значение, то и сами корни принимают положительные значения ⇒ подкоренные выражения также положительны.

ОДЗ:

\left \{ {{x+10} \atop {x+60}} \right. \Leftrightarrow \left \{ {{x-1} \atop {x-6}} \right. \Leftrightarrow x -1 \Leftrightarrow x \in (-1; +\infty);

\sqrt{x+1}\sqrt{x+6}=6;

(\sqrt{x+1}\sqrt{x+6})^{2}=6^{2};

(\sqrt{x+1})^{2} \cdot (\sqrt{x+6})^{2}=36;

(x+1)(x+6)=36;

x^{2}+6x+x+6-36=0;

x^{2}+7x-30=0;

\left \{ {{x_{1}+x_{2}=-7} \atop {x_{1} \cdot x_{2}=-30}} \right. \Leftrightarrow \left \{ {{x_{1}=-10} \atop {x_{2}=3}} \right. ;

Корень x₁ не удовлетворяет ОДЗ.

7) Знаменатель дроби не равен нулю ⇒ подкоренное выражение строго больше 0. Подкоренное выражение правой части уравнения также строго больше 0, поскольку, в противном случае, значение числителя равно 0, отсюда выходит, что "х" принимает отрицательное значение, что противоречит ОДЗ подкоренного выражения знаменателя дроби.

ОДЗ:

\left \{ {{x-20} \atop {3x+20}} \right. \Leftrightarrow \left \{ {{x2} \atop {x-\frac{2}{3}}} \right. \Leftrightarrow x2 \Leftrightarrow x \in (2; +\infty);

\frac{x+6}{\sqrt{x-2}}=\sqrt{3x+2};

x+6=\sqrt{x-2} \cdot \sqrt{3x+2};

(x+6)^{2}=(\sqrt{x-2} \cdot \sqrt{3x+2})^{2};

x^{2}+12x+36=(\sqrt{x-2})^{2} \cdot (\sqrt{3x+2})^{2};

x^{2}+12x+36=(x-2)(3x+2);

x^{2}+12x+36=3x^{2}+2x-6x-4;

x^{2}-3x^{2}+12x-2x+6x+36+4=0;

-2x^{2}+16x+40=0;

x^{2}-8x-20=0;

\left \{ {{x_{1}+x_{2}=8} \atop {x_{1} \cdot x_{2}=-20}} \right. \Leftrightarrow \left \{ {{x_{1}=-2} \atop {x_{2}=10}} \right. ;

Корень x₁ не удовлетворяет ОДЗ.

8) ОДЗ:

2x-1\geq0;

2x\geq1;

x\geq\frac{1}{2};

\sqrt{x^{2}+2x+10}=2x-1;

(\sqrt{x^{2}+2x+10})^{2}=(2x-1)^{2};

x^{2}+2x+10=4x^{2}-4x+1;

x^{2}-4x^{2}+2x+4x+10-1=0;

-3x^{2}+6x+9=0;

x^{2}-2x-3=0;

\left \{ {{x_{1}+x_{2}=2} \atop {x_{1} \cdot x_{2}=-3}} \right. \Leftrightarrow \left \{ {{x_{1}=-1} \atop {x_{2}=3}} \right. ;

Корень x₁ не удовлетворяет ОДЗ.

4,7(66 оценок)
Это интересно:
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ