1) Сложение отрицательных чисел. Возьмем пример -3+(-3)= Оба числа отрицательны, так что получаем, по сути, -3-3= Теперь достаточно сложить модули этих чисел и вписать перед ними минус, так как он, повторюсь, отрицательны
2) Сложение отрицательных и положительных чисел. Допустим, мы имеем пример -7+5=... Чтобы его решить, необходимо вычесть из числа с большим модулем число с меньшим модулем, не учитывая при этом знаки. 7-5=2. Потом мы подпишем знак минус перед двойкой, потому что у числа с большим модулем (семерки) значение было отрицательным.
Теперь важное примечание.
+- дают минус
-- дают плюс
Так что, если нам встретиться пример вроде 5-(-3), мы преобразуем его в 5+3 и получим 8
При a=-2 неравенство ax^2-(8+2a^2)x+16a>0 не имеет решений
Объяснение:
Выражение слева при а≠0 представляет собой параболу (при а=0 - решение есть).
Определим, при каких а у=ax^2-(8+2a^2)x+16a пересекает ось ОХ
Найдем дискриминант для ax^2-(8+2a^2)x+16a=0
D=(8+2а²)²-4а*16a=(8+2а²)²-(8а)²=(8+2а²-8а)(8+2а²+8а)=4(а-2)²(а+2)²=4(а²-4)²
D≥0 при любых значениях а, т. е. точки пересечения(хотя бы одна) с осью ОХ есть всегда.
Парабола будет лежать ниже оси ОХ в случае, когда а<0(ветви вниз направлены) и D=0(одна точка пересечения с осью ОХ)
4(а²-4)²=0; а²-4=0; a=-2
11=(5+9х)/х
11х=5+9х
11х-9х=5
2х=5
х=2,5
ответ при х=2,5 у=11