Четыре последовательных натуральных числа таковы , что произведение двух меньших из них чисел на 78 меньше ,чем произведение больших чисел. Найдите наименьшее из этих чисел.
Решение.
Пусть х - первое число, оно же является наименьшим;
(х+1) - второе число;
(х+2) - третье число;
(х+3) - четвертое число, тогда
х·(х+1) - это произведение двух меньших из данных чисел, а
(х+2)·(х+3) - это произведение двух больших из данных чисел.
По условию
х·(х+1) < (х+2)·(х+3) на 78
получаем уравнение:
(х+2)·(х+3) = х·(х+1) + 78 (ОДЗ; x∈N;)
x²+2x+3x+6 = x²+x+78
4x = 72
x = 72 : 4
x = 18
Получим четыре числа: 18; 19; 20; 21 из них
18 - является наименьшим.
ответ: 18.
Если периметр прямоугольника равен 56 см ,то полупериметр равен 28 см. Обозначим длину прямоугольника через х см ,тогда ширина равна
(28 - x) см . Стороны прямоугольника и диагональ образуют прямоугольный треугольник, в котором стороны прямоугольника - это катеты, а диагональ - это гипотенуза. Тогда по теореме Пифагора :
x² + (28 - x)² = 20²
x² + 784 - 56x + x² - 400 = 0
2x² - 56x + 384 = 0
x² - 28x + 192 = 0
D = (- 28)² - 4 * 192 = 784 - 768 = 16 = 4²
x₁ = (28- 4)/2 = 12
x₂ = (28 + 4)/2 = 16
28 - 12 = 16
28 - 16 = 12
ответ : стороны прямоугольника равны 12 см и 16 см
Значит выражение (7а-3) должно заканчиваться цифрами 1, 3, 5, 7, 9.
Поэтому 7а должно соответственно заканчиваться 4, 6, 8, 0, 2.
А само а заканчивается цифрой 2, 8, 4, 0, 6.
Теперь перебираем все пять вариантов окончания а:
а) При а=...2 Получаем а²-1=...3 -нечетное
не имеет смысл проверять далее
в) При а=...2 Получаем а²+а+1=...7 -нечетное
с) При а=...2 Получаем 5а+2=..2 -четное
при а=...8 Получаем 5а+2=..2 -четное
при а=...4 Получаем 5а+2=..2 -четное
при а=...0 Получаем 5а+2=..2 -четное
при а=...6 Получаем 5а+2=..2 -четное
d) При а=...2 Получаем а³+1=...9 -нечетное
е) При а=...2 Получаем 4а-3=...5 -нечетное
Значит выражение С является четным.