1)Перенесите все члены, не содержащие переменную из центральной части двойного неравенства.
− 8 < x ≤4
2)Перенесите все члены, не содержащие переменную из центральной части двойного неравенства.
3 < x < 5
3)определяя корни и создавая проверочные интервалы.
Форма неравенства:
− 12 < x < 2
Запись в виде интервала:
( − 12 , 2 )
4)Перенесите все члены, не содержащие переменную из центральной части двойного неравенства.
3/4 ≤ x < 5/ 4
так как это моя гипотиза может быть что ответ не правильный за рание прости
x3+x−2=0
x3+x−2=0Ищем первый корень через делители числа -2.
x3+x−2=0Ищем первый корень через делители числа -2.D=-2;-1;1;2
x3+x−2=0Ищем первый корень через делители числа -2.D=-2;-1;1;2Очевидно, что корень будет x=1
x3+x−2=0Ищем первый корень через делители числа -2.D=-2;-1;1;2Очевидно, что корень будет x=1Далее делим в столбик начальное выражение на корень уравнения (x-1)
x3+x−2=0Ищем первый корень через делители числа -2.D=-2;-1;1;2Очевидно, что корень будет x=1Далее делим в столбик начальное выражение на корень уравнения (x-1)Получаем результат x^{2}+x+2x2+x+2 .
x3+x−2=0Ищем первый корень через делители числа -2.D=-2;-1;1;2Очевидно, что корень будет x=1Далее делим в столбик начальное выражение на корень уравнения (x-1)Получаем результат x^{2}+x+2x2+x+2 .Приравниваем его к нулю, видим, что корней нет, так как дискриминат отрицательный.
x3+x−2=0Ищем первый корень через делители числа -2.D=-2;-1;1;2Очевидно, что корень будет x=1Далее делим в столбик начальное выражение на корень уравнения (x-1)Получаем результат x^{2}+x+2x2+x+2 .Приравниваем его к нулю, видим, что корней нет, так как дискриминат отрицательный.Следовательно, ответ: x=1
=(2 715/990-153/990)*220/217=(2 562/990)*220/217=
=(2 281/495)*220/217=
=1271/495*220/217=1271/99*44/217=
=1271/9*4/217=5084/1953=2 1178/1953