Пусть - канонический базис в .
Тогда матрицу перехода можно найти следующим образом:
Если записать блочную матрицу и привести путем элементарных преобразований к виду , то
Матрицу легко получить: достаточно записать в столбцы координаты векторов базиса . Аналогично с матрицей .
В итоге необходимо получить вид следующей матрицы:
Вычтем первую строку из второй и третьей:
Вычтем из первой строки 2 третьих и поменяем их местами:
Вычтем из третьей строки вторую:
Прибавим ко второй строке 2 третьих и вычтем из первой третью:
Делим вторую строку на 3:
Прибавляем в первой строке 2 вторых:
1060 = 5*Vавто + 8*Vпоезда
1060 = 5*Vавто + 8*(Vавто + 15)
1060 = 5*Vавто + 8*Vавто + 120
940 = 13*Vавто
Vавто = 940/13