М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
оля20121
оля20121
12.12.2021 18:55 •  Алгебра

Выполнить действия: а) 14^5/7^5 б)-5*2^3+10^3 в)0,75^2-0,74^2 г)6m-3(2m-5n) д)4а^2-(b-2a)^2 e)a^2x-a^2y ё)1,2а^5b^3-2,4a^3b^5

👇
Ответ:
LiliyaEgor
LiliyaEgor
12.12.2021
А) (14/7)^5=2^5=32
б) -10^3+10^3=0
в) (0,75-0,74)^2=0,01^2=0,0001
г) 6m-6m+15n=15n
д) (4а-b+2a)^2=(6a-b)^2=36a^2-12ab+b^2
4,5(96 оценок)
Открыть все ответы
Ответ:
Kjabarovsk
Kjabarovsk
12.12.2021
ax^2-(a^2+5)x+3a-5=0

 Если  у  данного  уравнения существуют два различных натуральных корня X1 и X2 , то   их  сумма и произведение -  тоже натуральные числа.  тогда  по теореме Виета:

x_{1} *x_{2} = \frac{3a-5}{a} \\

 \frac{3a-5}{a} = n_{1} ,    где   n1  -   нат. число.  Тогда

3a-5 = n_{1}*a \\
Правая часть данного равенства делится на a,  значит и левая должна тоже делиться на a.  Слева имеем сумму двух слагаемых,  чтобы это сумма делилась на a,  надо чтобы оба слагаемых делились на a.

3a  делится на а,  и 5 должно делиться на а.  Т.о.  а∈{ -5, -1, 1, 5}.
 
Подставляем поочередно эти  значения а  в  выражение \frac{3a-5}{a} .

a=-5, \frac{3*(-5)-5}{-5}= \frac{-20}{-5}= 4 \\ 
a=-1, \frac{3*(-1)-5}{-1}= \frac{-8}{-1}= 8 \\ 
a=1, \frac{3*1-5}{1}= \frac{-2}{1}= -2 \\ 
a=5, \frac{3*5-5}{5}= \frac{10}{5}= 2 \\

Т.о.  натуральное значение  выражение принимает при а=-5,  а=-1 и а=5.
По  т.Виета x_{1} + x_{2} = \frac{a^2+5}{a} \\
Проверим при каких из этих значений сумма корней исходного уравнения будет  натуральным числом:

a=-5; \frac{(-5)^2+5}{-5} = \frac{30}{-5} = -6 \\ 
a=-1; \frac{(-1)^2+5}{-1} = \frac{6}{-1} = -6 \\ 
a=5; \frac{5^2+5}{5} = \frac{30}{5} = 6 \\

Итак, уравнение может иметь два различных натуральных корня только при  a=5.  Проверим  будут ли этом значении  а  корни исходного уравнения натуральными числами.  
При   a=5.  уравнение примет вид:  
 5 x^{2} - 30x +10 =0 \\ 
 x^{2} - 6x +2 =0 \\
D = 28

значит корни будут иррациональными.

ответ:  ∅.
4,5(74 оценок)
Ответ:
(x^2-x-a^2-a)(x^2-(a+2)x-2a^2+4a)=0
1)x^2-x-a^2-a=0          
(x-a-1)(x+a)=0
x1=a+1; x2=-a
2)x^2-(a+2)x-2a^2+4a
(x-2a)(x+a-2)=0
x3=2a;x4=2-a
чтобы исходное уравнение имело три РАЗЛИЧНЫХ корня, нужно чтобы какие-то ДВА были одинаковыми, а другие два различными между собой и между теми двумя одинаковыми; ну то есть например находишь такое a, что x1=x2 и потом подставляешь его в x3 и x4 и смотришь, чтобы x3≠x4≠x1
у тебя будет как максимум C_{4}^{2}=6 значений а, но поскольку x2≠x4 при любом a, то всего 5 значений параметра ( то, что ты записала как ответ, ты получишь, если сама дорешаешь)
4,7(84 оценок)
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ