Tgx + ctgx = 5 sinx/cosx + cosx/sinx = 5 Умножим обе части уравнения на sinx*cosx. (sinx)^2 + (cosx)^2 = 5sinx*cosx Так, как (sinx)^2 + (cosx)^2 = 1, 5sinx*cosx = 1 sinx*cosx = 1/5 Теперь запишем (sinx + cosx)^2 = (sinx)^2 + (cosx)^2 + 2sinx*cosx = 1 + 2/5 = 7/5, откуда sinx + cosx = √(7/5) sinx + cosx = -√(7/5) Решений два, потому что период синуса и косинуса в два раза больше, чем у тангенса и котангенса, что означает, что на одно значение суммы тангенса и котангенса будет два значения суммы синуса и косинуса
5х-6х+4у-4у=-4+4
х=0
5*0+4у=-4
4у=-4
у=-1