Объяснение:
1.
(17³ + 16³) / 33- 17 × 16 = (4913 + 4096) / 33 - 272 = 9009 / 33 - 272 = 273 - 272 = 1
2.
a) 3b³ - 24 = 3(b³ - 8) = 3(b - 2)(b² + 2b + 4)
b) a² - 8ay + 16y² + 3a - 12y = (a - 4y)² + 3(a - 4y) = (a - 4y)(a - 4y + 3)
3.
a) (2y - 5)² + (3y - 5)(3y + 5) + 40y = 4y² - 20y + 25+ 9y² - 25 + 40y = 13y² + 20y
b) При y = -2:
13 × (-2)² + 20 × (-2) = 52 - 40 = 12
4.
x - y = 3, x² - y² = 87
x = 3 + y, x² - y² = 87
(3 + y)² - y² = 87
9 + 6y + y² - y² = 87
9 + 6y = 87
6y = 87 - 9
6y = 78
y = 13
x = 3 + 13
x = 16
(x, y) = (16, 13)
Мы видим, что данная функция является сложной, поэтому будем её дифференцировать как сложную.
Формула
d/dx( f(g(x)) ) = f'(g(x)) × g'(x), где в нашем случае f(x) = cos(x), а g(x) = x^x.
Для применения правила дифференцирования сложной функции, заменим x^x новой переменной t.
Дифференцируем
Для упрощения производной запишем х^х как e^( ln(x^x) ).
И опять сложная функция.
Дифференцируем её аналогично:
f(x) = e^x, g(x) = xln(x)
Заменим xln(x) перевенной k:
За правилом производной произведения имеем:
Вычисляем все производные и получаем:
Это и есть ответ.
розпишем 4=2^2, далее 2^2•2^(n+1)=
2^(2+n+1)= 2^(3+n)