при любом значении b решите уравнение : (x^2+(3b+2)X+2b^2 +3b+1) / (x^2 - 5x +4)=0
(x²+(3b+2)x+2b² +3b+1) / (x² - 5x +4)=0 ; ОДЗ: x² - 5x +4≠0 ⇒ [ x ≠ 1 ; x ≠ 4. --- x²+(3b+2)x+2b² +3b+1=0 ; D=(3b+2)² - 4(2b² +3b+1)= b² ≥ 0 всегда имеет решения : x₁ = (-3 b- 2 - b)/2 = -1 - 2b , если -1 - 2b ≠ 1 и -1 - 2b ≠ 4 , т.е. если b ≠ -1 и b ≠ -2,5. x₂ = (- 3b - 2 +b)/2 = -1 - b , опять если -1 - b ≠ 1 b и -1 - b ≠ 4 , . т.е. если b ≠ -2 и b ≠ - 5.
* * * * P.S. Можно было в самом начале для уравнения x²+(3b+2)x+2b² +3b+1=0 исключить x =1 и x = 4 в качестве корней;
1) 1²+(3b+2)1+2b² +3b+1=0 ⇔2b² +6b+4 =0⇔ b² +3b+2 =0 ⇒[ b = -2 ; b = -1 . 2) 4²+(3b+2)4+2b² +3b+1=0⇔2b² +15b+25 =0⇔ [ b = -5 ; b = - 2,5 .
9y² + 12xy практически создают квадрат суммы, дополним это выражение: 9y² + 12xy + 4x² = (3y + 2x)², заметим, что это выражение есть целое число в квадрате.
Во втором уравнении
y' = (-a^(1/3))/(2*x') это ГИПЕРБОЛА.
Теперь рассматриваем различные случаи значений а.
а=0 => одно решение (0;0)
Подставив y' из ур-я гиперболы в ур-е окружности, получим биквадратное уравнение относительно x'.
x'^4 - (2a/3)*x'^2+4*a^(2/3) = 0
исследуем его дискриминант.
(1/9)*a^4-a^(2/3) >= 0 , откуда a^(10/3) >=9 => a>= 9^(3/10)
ответ: a=0 один корень
а = 9^(3/10) два корня
a > 9^ (3/10) четыре корня!