Здесь первый корень можно путем сложения коэффициентов, если при сложении получается 0, то один из корней равен 0. t=1 1+1-2=0 Значит один из множителей (t-1). Проведем деление многочленов. _t⁸+t-2 I t-1 t⁸-t⁷ t⁷+t⁶+t⁵+t⁴+t³+t²+t-2 _t⁷+t t⁷-t⁶ _t⁶+t t⁵- t⁴ _ t⁴+t t⁴- t³ _t³+t t³- t² _t²+t t² -t _ 2t-2 2t-2 0
(t⁷+t⁶+t⁵+t⁴+t³+t²+t-2)(t-1)=0
Если мы посмотрим на уравнение 8 степени, то можно увидеть, что чем больше число (+ или -), тем дальше значение уравнения от 0. Значит надо искать корни в пределах [-1;1]. t⁷+t⁶+t⁵+t⁴+t³+t²+t-2 - действительных корней не имеет. Значит t=1
X^2+7x+10<0, y=x^2+7x+10 - квадратичная функция (парабола). Находим корни по дискриминанту или по теореме Виета (Я нашёл по дискриминанту). D=b^2-4ac,D=7^2-4*1*10=49-40=9=3^2. x1= -b+√D/2a=-7+3/2= -2. x2=-b-√D/2a=-7-3/2= -5. После того,как мы нашли корни (x1,x2),отмечаем точки -5 и -2 на координатной прямой,на оси x,конечно же,после чего рисуем квадратичную функцию (параболу) : y=x^2+7x+10; при a>0,D>0. Обязательно ветви вверх,так как a>0. За пределами ветвей параболы или её области,значения удовлетворяют решению "больше" (>,+),так как нам нужны значения "меньше" (-,<),то ответом будет область не за ветвями параболы,то есть интервал (-5;-2) (знак нестрогий,поэтому интервал и скобки круглые).ответ : x∈ (-5;-2),или ответ можно записать так ; -5<x<-2.
X^2+7x+10<0, y=x^2+7x+10 - квадратичная функция (парабола). Находим корни по дискриминанту или по теореме Виета (Я нашёл по дискриминанту). D=b^2-4ac,D=7^2-4*1*10=49-40=9=3^2. x1= -b+√D/2a=-7+3/2= -2. x2=-b-√D/2a=-7-3/2= -5. После того,как мы нашли корни (x1,x2),отмечаем точки -5 и -2 на координатной прямой,на оси x,конечно же,после чего рисуем квадратичную функцию (параболу) : y=x^2+7x+10; при a>0,D>0. Обязательно ветви вверх,так как a>0. За пределами ветвей параболы или её области,значения удовлетворяют решению "больше" (>,+),так как нам нужны значения "меньше" (-,<),то ответом будет область не за ветвями параболы,то есть интервал (-5;-2) (знак нестрогий,поэтому интервал и скобки круглые).ответ : x∈ (-5;-2),или ответ можно записать так ; -5<x<-2.
х-2≥0
x≥2
x∈[2; +∞)
(x-2)=t⁸
t⁸+t-2=0
Здесь первый корень можно путем сложения коэффициентов, если при сложении получается 0, то один из корней равен 0.
t=1
1+1-2=0
Значит один из множителей (t-1). Проведем деление многочленов.
_t⁸+t-2 I t-1
t⁸-t⁷ t⁷+t⁶+t⁵+t⁴+t³+t²+t-2
_t⁷+t
t⁷-t⁶
_t⁶+t
t⁵- t⁴
_ t⁴+t
t⁴- t³
_t³+t
t³- t²
_t²+t
t² -t
_ 2t-2
2t-2
0
(t⁷+t⁶+t⁵+t⁴+t³+t²+t-2)(t-1)=0
Если мы посмотрим на уравнение 8 степени, то можно увидеть, что чем больше число (+ или -), тем дальше значение уравнения от 0.
Значит надо искать корни в пределах [-1;1].
t⁷+t⁶+t⁵+t⁴+t³+t²+t-2 - действительных корней не имеет. Значит
t=1
Проведем обратную замену.
x-2=1
x=3
ответ х=3