Объяснение:
1) (x+2)²(x-5)^3=(x-5)(x+2)^4
(x+2)²(x-5)^3-(x-5)(x+2)^4=0
(x+2)²(x-5)((x-5)²-(x+2)²)=0
(x+2)²(x-5)((x-5-(x+2))((x-5+(x+2))=0
(x+2)²(x-5)·(-7)(2x-3)=0
-14(x+2)²(x-5)(x-1,5)=0
(x+2)²(x-5)(x-1,5)=0
x= -2; 1,5; 5;
ответ: -2; 1,5; 5;
2) (2x+1)^3(2x-3)^5=(2x+1)^5(2x-3)^3
(2x+1)^3(2x-3)^5-(2x+1)^5(2x-3)^3=0
(2x+1)^3(2x-3)^3((2x-3)^2-(2x+1)^2)=0
(2x+1)^3(2x-3)^3((2x-3)-(2x+1))((2x-3)+(2x+1))=0
(2x+1)^3(2x-3)^3·(-4)(4х-2)=0
-16· (2x+1)^3(2x-3)^3(х-0,5)=0
(2x+1)^3(2x-3)^3(х-0,5)=0
8·8(x+0,5)^3(x-1,5)^3(х-0,5)=0
(x+0,5)^3(x-1,5)^3(х-0,5)=0
х= -0,5; 0,5; 1,5;
ответ:-0,5; 0,5; 1,5;
1) f(x)=7x-14, [0;4]
производная равна 7, 7≠0, , поэтому нет критических точек, и наибольшее и наименьшее свое значение функция принимает на концах отрезка.
f(0) = -14-наименьшее значение.
f(4) =14 наибольшее значение функции
2) f(x)= -0,2x + 0,4, [1;3]
аналогично 1) производная -0.2≠0, ищем значения функции на концах отрезка, т.е. f(1) =-0.2+0.4=0.2- наибольшее значение.
f(3) =-0.6+0.4=-0.2-наименьшее значение.
3) f(x)= 6/x, [1;6]
производная равна -6/х²≠0, не существует в точке 0, но эта точка не входит и в область определения. ищем значения функции на концах отрезка, т.е. f(1) =6/1=6- наибольшее значение.
f(6) =6/6=1- наименьшее значение.
4) f(x)= -5/x, [-5;-1]
Производная равна 5/х²≠0 не существует в точке 0, но эта точка не входит и в область определения. ищем значения функции на концах отрезка, т.е. f(-1) =-5/(-1)=5- наибольшее значение.
f(-5) =-5/(-5)=1- наименьшее значение.