См. объяснение и графики (в прикреплении)
Объяснение:
Чтобы найти координаты точки пересечения графиков двух функций, необходимо: 1) приравнять их; 2) из этого равенства найти х; 3) по найденному значению х найти у.
Задание В
1) приравняем х = 3х-4;
2) 2х = 4, х = 2;
3) если в первое уравнение подставить х = 2, то получим у = 2.
ответ: координаты точки пересечения х = 2, у = 2.
Построение графика.
1) Графики строим по точкам.
2) Для каждого графика необходимо 2 точки, т.к. это прямые линии.
3) Точки для графика у=х:
1) х = 0, у = 0; 2) х = 5; у = 5.
4) Точки для графика у=3х-4:
1) х = 0, у = - 4; 2) х = 3; у = 5.
ВНИМАНИЕ: оба графика должны пройти через точку пересечения.
Задание Г
) приравняем 3х + 2 = -0,5 х - 5;
2) 3,5 х = - 7, х = - 2;
3) если в первое уравнение подставить х = - 2, то получим у = -4.
ответ: координаты точки пересечения х = - 2, у = - 4.
Построение графика.
1) Графики строим по точкам.
2) Для каждого графика необходимо 2 точки, т.к. это прямые линии.
3) Точки для графика у=3х+2:
1) х = 0, у = 2; 2) х = 2; у = 8.
4) Точки для графика у=-0,5х-5:
1) х = 0, у = - 5; 2) х = 4; у = - 7.
Примечание: оба графика должны пройти через точку их пересечения.
Объяснение:
2^x^2 *2^(x-1) < 2^(3(*x/3 +3)), 2^(x^2+x-1) < 2^(x+9) ( ^-знак степени)
x^2+x-1<x+9, x^2 -10<0, (x-V10)*(x+V10)<0, + + + + + (-V10) - - - - -- (V10) ,
ответ (-V10; V10) (V-корень)
х²+8x+15=0
D=b²-4ac=8²-4·15=64-60=4=2²
x₁= (-8-2)/2=-5 или х₂ = (-8+2)/2=-3, тогда
х²+8x+15=(х-(-5))(х-(-3))=(х+5)(х+3)
2)16 x²-25x+9=0
D=b²-4ac==(-25)²-4·16·9=625-576=49=7²
x₁= (25-7)/32=18/32=9/16 или х₂ = (25+7)/32=1, тогда
16х²-25x+9=16(х-(9/16))(х-1)=(16х-9)(х-1)