При каких a неравенство (2a-3)cosx -5 >0 не имеет решения.а) { 2a -3 < 0 ;cosx < 5/(2a-3).⇔{ a < 1,5 ;cosx < 5/(2a-3) . не имеет решения , если 5/(2a-3) ≤ -1⇔5/(2a-3)+1 ≤ 0 ⇔(a+1)/(a-1,5) ≤ 0. a∈ [-1 ;1,5) .
б) 2a-3 =0 неравенство не имеет решения. a =1,5.
в) { 2a -3 > 0 ;cosx > 5/(2a-3)..⇔{ a > 1,5 ;cosx > 5/(2a-3) . не имеет решения , если 5/(2a-3) ≥1⇔5/(2a-3)-1 ≥ 0 ⇔(a-4)/(a-1,5) ≤ 0. a∈ (1,5 ; .4].
Допустим, что скорость первого велосипедиста = х км/ч,
Поскольку по условию задания скорость одного на 3 км/ч больше скорости другого, значит скорость другого велосипедиста = х-3 км/ч
Время в пути велосипедистов = расстояние между селами / скорость велосипедистов, значит
36/х - время в пути первого велосипедиста
36/ (х-3) - время в пути второго велосипедиста
По условию задания расстояние между селами один велосипедист преодолевает на 1 час быстрее другого.Поэтому выходит, что первый велосипедист тратит на 1 час меньше нежели второй на преодоление расстояния между селами А значит 36/х +1 = 36/ (х-3)
36/х - 36/ (х-3)=-1
(36*(х-3))/(х*(х-3)) - (36*х)/(х*(х-3))=-1
(36х-108)/(х*(х-3)) - (36х)/(х*(х-3))=-1
(36х-108 - 36х)/(х*(х-3))=-1
-108=-(х*(х-3))
108=х²-3х
х²-3х-108=0
Теперь решим квадратное уравнение
Выпишем коэффициенты квадратного уравнения: a = 1,