C(3;54)
просто подставляем в уравнение y= 2x³ значения точек, на место x идёт первое число( например у точки C это 3), а на место y второе число(то есть 54). Последняя точка D явно не будет подходить, так как первое число отрицательное, а второе положительное( а степень в уравнении третья, поэтому с каким знаком первое число, с таким и будет ответ).
Для точки А : 3 = 2 × 0³ не подходит( 3≠ 0)
Для точки В : 24 = 2× 2³, 24 = 2× 8 не подходит (24≠16)
Для точки С : 54= 2× 3³, 54= 2× 27 - верно (54 = 54)
Для точки Д : -2 = 2 × 15³ - не подходит ( -2 отрицательное, но 2 × 15³ не может быть отрицательным)
Разложим число 22 на простые множители.
Последовательность действий следующая:
1) Проверяем является ли число простым;
2) Если простое, то останавливаем процесс. Если не простое число, то делим его на простое число, начиная с наименьшего (2, 3, 5, ).
Простое число - это натуральное число, которое > 1 и имеет два натуральных делителя: 1 и само себя.
Разложим число:
22 не является простым;
Делим на 2: 22/2 = 11;
11 является простым.
ответ: 22 = 2*11, где
2 и 11 - это простые множители числа 22.
Объяснение:
Находим нули функции у =(х-2)³(х+1)(х-1)²(х²+2х+5)
Решаем уравнение:
(х-2)³(х+1)(х-1)²(х²+2х+5)=0
Произведение нескольких множителей равно нулю, когда хотя бы дин из них равен нулю.
1) (х-2)³=0 ⇒ х-2 = 0 ⇒ х₁=2
2) х+1 = 0 ⇒ х₂=-1
3) (х-1)²=0 ⇒ х-1 = 0 ⇒х₃=1
4) х²+2х+5=0 D=4-4·5<0 уравнение не имеет действительных корней.
Отмечаем корни на числовой прямой и расставляем знаки функции
у =(х-2)³(х+1)(х-1)²(х²+2х+5)
При х =0 получим
-8·1·(-1)²·5 <0 ставим знак "-" на (-1;1) . Так как при переходе через точку (1) знак не меняется, то знаки расставляем так:
+ - - +
(-1)(1)(2)
ответ. (-1:1) U (1; 2)