х = 4; у = 2
Объяснение:
Задание
Дана система уравнений:
5y-x = 6 (1)
3x-4y =4 (2)
Найти х и у методом алгебраического сложения.
Решение
Объяснение. Для решения системы уравнений методом алгебраического сложения необходимо уравнять коэффициенты при х или у (судя по тому, что проще), а затем сложить левые и правые уравнений, если коэффициенты с противоположными знаками, либо из одного уравнения вычесть другой, если знаки перед этим неизвестным одинаковые.
1) Домножим уравнение (1) на 3:
5у · 3 - х · 3 = 6 · 3
15у - 3х = 18 (3)
2) Складываем левые и правые части уравнений (2) и (3):
(3x - 4y) + (15у - 3х) = 4 + 18
3х - 4у + 15у - 3х = 22
11 у = 22
у = 22 : 11 = 2
3) Подставим в уравнение (1) у = 2:
5 · 2 - x = 6
10 - х = 6
- х = 6 - 10
- х = - 4
х = 4
ПРОВЕРКА
При х = 4 и у = 2 левая часть уравнения (1) равна:
5 · 2 - 4 = 10 - 4 = 6
Так как левая часть равна правой части, то это говорит о том, что корни найдены верно.
Аналогично проверяем второе уравнение:
3 · 4 - 4 · 2 = 12 - 8 = 4
4 = 4
ответ: х = 4; у = 2.
Объяснение:
а) 9x-3y=6;
Выражаем у через х и получаем линейную функцию:
3у=9х-6;
у=(9х-6)/3=3х-2;
у=3х-2.
Графиком линейной функции является прямая, прямую можно построить по двум точкам, например:
х у
0 -2
2 4
См. рисунок а).
б) y=-4x+2;
График линейной функции - прямая, строим ее по двум точкам, например:
х у
0 2
1 -2
См. рисунок б).
в) y=⅓x;
График прямой пропорциональности - это прямая, которая проходит через начало координат точку О(0;0).
Строим по двум точкам, например:
х у
0 0
3 1
См. рисунок в).
г) y=-x;
График прямой пропорциональности - прямая, которая проходит через начало координат точку О(0;0).
Строим по двум точкам, например:
х у
0 0
2 -2
См. рисунок г).
д) y=-5;
Графиком является прямая, которая проходит через точку (0;-5) и параллельно оси абсцисс (ОХ).
См. рисунок д).
e) x=4;
Графиком является прямая, которая проходит через точку (4;0) и параллельно оси ординат (ОY).
Подробнее - на -
б. 1, ¹/₂, 1,1, √2.
в. -2, ²/₃, -0,5, -√3.
г. -1, 0, 1, 10.
д. -2,(3), 5, ¹/₄, 3¹/₂.
е. √2, √10, π, е.
ж. 2, 4, 6, 122.
з. 2, 3, 5, 37.
и. 1, 3, 5, 99.
к. 3,1, 3,5, 4, 100.
л. 4, 6, 9, 144.
м. 3, 6, 9, 102.