Пусть за х дней может закончить Катя, тогда еѐ производительность равна / х .
А за у дней может закончить Алиса, тогда еѐ производительность равна / у .
Т.к. они могут напечатать курсовую работу за 6 дней,
то /х + /у = 1/
Если сначала % = / части курсовой напечатает Катя,
а затем завершит работу Алиса, то Алисе остается
% = / части курсовой.
Вся курсовая работа будет выполнена за 12 дней т.е.
( /) х + (/ ) у = .
Решим систему:
/х + /у = / ,
(/) х + (/ ) у = .
+ = ,
+ = ;
у = − , ;
+ * ( − , ) = *( − , )
у = − , ;
, ² − + = ;
у = − , ;
² − + = ;
² − + = ;
= , у =
или = , у = . - не подходит, т.к. Катя печатает быстрее, чем Алиса.
Значит, Катя может напечатать курсовую работу за 10 дней.
ответ. за 10 дней
100% - 160 дтп;
95% - х дтп.
100* х = 95*160;
100 х = 15200.
х = 15200: 100;
х= 152.
№ 7. 20 клеток увеличить на 10% - значит увеличить его на 1/10, то есть на 2 клетки. Всего 22 клетки.
Уменьшить на 20 % - значит уменьшить отрезок на 1/5 часть, то ест на 4 клетки. Получится всего 16 клеток.
№12. Если клиент через год получит в банке прибыль 12 %, то сумма его денег станет равна 100% + 12% = 112%.
Составим пропорцию:
112 % - 800 рублей;
100% - х рублей.
Умножим крестиком;
112* х = 100*800;
112 х = 80000;
х = 80000: 112;
х≈714, 285.
Округляем до целого числа, то есть до рублей.
ответ ; он положил в банк 714 рублей