54мин=54/60ч=9/10ч=0,9ч х-время быстрой группы на весь путь х+0,9-время медленной группы на весь путь 18/2=9км/ч- совместная скорость 18/х+18/(х+0,9)=9 18(х+0,9)+18х=9х(х+0,9) 18х+16,2+18х=9х²+8,1х 36х+16,2=9х²+8,1х 9х²+8,1х-36х-16,2=0 9х²-27,9х-16,2=0 разделим на 9 х²-3,1х-1,8=0 d = (-3.1)2 - 4·1·(-1.8) = 9.61 + 7.2 = 16.81х₁=( 3.1 - √16.81)/(2*1) = (3.1 - 4.1)/2 = -1/2 = -0.5- не подходитх₂=(3.1 +√16.81)/(2*1) = (3.1 + 4.1)/2 =7,2/2 = 3,6 18/3,6=180/36=20/4=5км/ч-скорость быстрой группы 9-5=4км/ч- скорость медленной группы
Если x1 и x2 – корни квадратного уравнения a·x2+b·x+c=0, то сумма корней равна отношению коэффициентов b и a, взятому с противоположным знаком, а произведение корней равно отношению коэффициентов c и a, то есть, дано: х2+рх+ф=0 м и н некоторые числа м+н=-р м*н=ф док-ть: м и н корни квадратного уравнения док-во: х2+рх+ф=0 х2-(м+н) *х+м*н=0 х2-мх-нх+м*н=0 х (х-н) -м (х-н) =0 (х-м) (х-н) =0 х-м=0 х-н=0 х=м х=н чтд
x² - 4x + 4 = 9
x² - 4x - 5 = 0
По теореме Виета:
x₁ = -1
x₂ = 5
3log₄ x = log₄ 12,5 + log₄ 64
log₄ x³ = log₄ 800
x³ = 800
x = 2
2log₃ (x-2) - log₃ (x+1) = 1
log₃ (x-2)² - log₃ (x+1) = 1
log₃ (x-2)² = log₃ 3 + log₃ (x+1)
log₃ (x-2)² = log₃ 3(x+1)
x² - 4x + 4 = 3x + 3
x² - 7x + 1 = 0
D = (-7)² - 4 = 45
x₁ =
x₂ =
log₄ (x-4) + log₄ (x+4) = log₄ (3x+2)
log₄ (x-4)(x+4) = log₄ (3x+2)
x² - 16 = 3x+2
x² - 3x - 18 = 0
По теореме Виета:
x₁ = -3
x₂ = 6