М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Lisaezhik
Lisaezhik
22.04.2023 07:42 •  Алгебра

Какие из чисел -3,-2,2,3 ,является корнем уранения |х-4|=2-4х

👇
Ответ:
пипл4
пипл4
22.04.2023

|х-4| = 2-4х

  {х-4 ≥ 0                  или          {х-4 < 0 

  {х-4  = 2-4х                            {- х+4  = 2-4х

 

{х ≥ 4                  или         {х < 4 

{ 5х = 6                              {3х = -2

 

{х ≥ 4                  или          {х < 4 

{ х = 6/5                             {х = -2/3

      Ф                                    х = -2/3

 

корнем уранения является   -2/3


ответ:  из перечисленных чисел ни одно не является решением.

4,7(81 оценок)
Открыть все ответы
Ответ:
OTJTu4HuK
OTJTu4HuK
22.04.2023

Введем подстановку t = cos (3x), где |t| меньше или равен 1, т.к. функция cosx является ограниченной снизу -1, сверху +1.

Тогда исходное уравнение перепишется следующим образом:

2t^2 - 5t - 3 = 0.

Сейчас перед нами обыкновенное квадратное уравнение. Находим дискриминант и корни, если они будут.

D = b^2 - 4ac,

D = 25 + 24 = 49,

D>0 и значит уравнение имеет два корня.

t1 = (-b - корень из D) / (2a),

t1 = (5 - 7) / 4 = -1/2;

t2 = (-b + корень из D) / (2a),

t1 = (5 + 7) / 4 = 3;

Вернемся к подстановке t = cos (3x): 

1) cos (3x) = -1/2,

3x = ± (2pi) / 3 + 2pi*k, где k - целое число;

x = ± (2pi)/9 + (2pi*k) / 3, где k - целое число.

2) cos (3x) ≠ 3, т.к. |t| ≤ 1.

ответ: x = ± (2pi)/9 + (2pi*k) / 3, где k - целое число.

4,5(53 оценок)
Ответ:
05DKuzmin
05DKuzmin
22.04.2023

Объяснение:

Линейное уравнение – уравнение, сводящееся к виду ax+b=0, где a≠0,b – числа. Линейное уравнение всегда имеет единственное решение x=−ba.   Квадратное уравнение – уравнение, сводящееся к виду ax2+bx+c=0, где a≠0,b,c – числа. Выражение D=b2−4ac называется дискриминантом квадратного уравнения. Квадратное уравнение может иметь не более двух корней:   ∙ если D>0, то оно имеет два различных корня и x1=−b+D2aиx2=−b−D2a ∙ если D=0, то оно имеет один корень (иногда говорят, что два совпадающих) x1=x2=−b2a ∙ если D<0, то оно не имеет корней.   ▸ Теорема Виета для квадратного уравнения:   Если квадратное уравнение имеет неотрицательный дискриминант, то сумма корней уравнения x1+x2=−ba а произведение x1⋅x2=ca ▸ Если квадратное уравнение:   ∼ имеет два корня x1 и x2, то ax2+bx+c=a(x−x1)(x−x2).   ∼ имеет один корень x1 (иногда говорят, что два совпадающих), то ax2+bx+c=a(x−x1)2.   ∼ не имеет корней, то квадратный трехчлен ax2+bc+c никогда не может быть равен нулю. Более того, он при всех x строго одного знака: либо положителен, либо отрицателен.   ▸ Полезные формулы сокращенного умножения:   x2−y2=(x−y)(x+y)(x+y)2=x2+2xy+y2(x−y)2=x2−2xy+y2 Ознакомиться с полной теорией

4,8(69 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
Полный доступ к MOGZ
Живи умнее Безлимитный доступ к MOGZ Оформи подписку
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ