Пусть х руб. - цена детского билета, у руб. - цена взрослого билета. Составим систему уравнений по условию задачи:
{2х + у = 315
{3х + 2у = 565
- - - - - - - - - - - -
Вычтем из второго уравнения первое:
(3х - 2х) + (2у - у) = 565 - 315
х + у = 250
у = 250 - х
- - - - - - - - - - - -
Подставим значение у в любое уравнение системы
2х + 250 - х = 315 3х + 2 · (250 - х) = 565
2х - х = 315 - 250 3х + 500 - 2х = 565
х = 65 3х - 2х = 565 - 500
х = 65
- - - - - - - - - - - -
у = 250 - 65
у = 185
ответ: детский билет стоит 65 рублей,
а взрослый билет стоит 185 рублей.
Проверка:
2 · 65 + 1 · 185 = 130 + 185 = 315 руб. - заплатила первая семья
3 · 65 + 2 · 185 = 195 + 370 = 565 руб. - заплатила вторая семья
В решении.
Объяснение:
1)Является ли вид одночлена 36аb^2*ac*3*e^3 стандартным? ответ обоснуйте. В случае, если вид не стандартный, приведите одночлен к стандартному виду.
Одночленом называется выражение, которое содержит числа, натуральные степени переменных и их произведения, и при этом не содержит никаких других действий с этими числами и переменными.
Одночлен называется представленным в стандартном виде , если он представлен в виде произведения числового множителя на первом месте и степеней различных переменных. Числовой множитель у одночлена стандартного вида называется коэффициентом одночлена, сумму показателей степени переменных называют степенью одночлена.
36аb²*ac*3*e³; 108а²b²ce³ - станд. вид.
2)Для одночлена 6x²*y³*0,5z укажите коэффициент и степень.
3x²y³z - станд. вид; коэф. 3; степень 2+3+1=6.
3)Среди выражений выберите одночлены, перечислите их: 4xy; -0,5x²y; 64; x+8; 0; a/7; 1-x; 7/x; 0,2x*4y; (-2y)/8. Свой ответ обоснуйте.
К одночленам относятся числа, переменные, а также их степени с натуральным показателем и разные виды произведений, составленные из них.
4)Для одночлена abc укажите коэффициент и степень. Коэф. 1 , степень 1+1+1=3.
5) Верно ли утверждение, что степень одночлена - это самая большая степень его переменной? ответ обоснуйте .
Нет, не верно. Сумму показателей степени переменных называют степенью одночлена.
{x^2+xy-y^2=20
Из уравнения 1 вырахим переменную у
{y=3x-10
{x^2+xy-y^2=20
Подставим вместо переменной у найденное выражение
{y=3x-10
{x^2+x(3x-10)-(3x-10)^2=20
Решаем второе уравнение.
x²+x(3x-10)-(3x-10)²=20
Раскрываем скобки
x²+3x²-10x-9x²+60x-100=20
Приводим подобные члены(подчеркнул вам)
-5х²+50х-120=0|:(-5)
x²-10x+24=0
Находим дискриминант
D=b²-4ac=(-10)²-4*1*24=4; √D=2
Дискриминант положителен, значит уравнение имеет 2 корня.
Найдем y.
ответ: (4;2), (6;8).