а) 60°. б) 90°.
Объяснение:
Многогранник АВСDA1B1C1D1 - параллелепипед, так как боковые ребра взаимно параллельны (дано).
а). В прямоугольнике АВСD диагонали равны и точкой пересечения делятся пополам. Следовательно, треугольник АОВ равносторонний и углы при основании равны 60°. => ∠ВАО = 60°.
Прямые А1В1 и АС - скрещивающиеся по определению: "Скрещивающиеся прямые — прямые, которые не лежат в одной плоскости и не имеют общих точек или другими словами это две прямые в пространстве, не имеющие общих точек, и не являющиеся параллельными".
Угол между скрещивающимися прямыми - это угол между любыми двумя пересекающимися прямыми, которые параллельны исходным скрещивающимся.
Так как АВ параллельна А1В1, то угол между скрещивающимися прямыми А1В1 и АС равен углу между пересекающимися прямыми АВ и АС. То есть это угол ВАО = 60°.
б) Аналогично, угол между скрещивающимися прямыми АВ и А1D1 равен углу между пересекающимися прямыми АВ и АD., то есть углу ВАD.
Поэтому, так как АВСD - прямоугольник, то искомый угол - ∠ВАD = 90°.
Треугольник образован средними линиями подобен исходному, только стороны его в два раза меньше. Если средние линии треугольника относятся как 2:2:4, то в таком же отношении относятся и стороны треугольника.
Пусть одна сторона треугольника равна 2x, тогда две остальные 2x и 4x соответственно,тогда
2x+2x+4x=45 => 8x=45 => x=5,625
то есть стороны треугольника равны
1. 2x=2*5,625 = 11,25
2. 2x=2*5,625 = 11,25
3. 4x=4*5,625 = 22,5