Из условия нам известно, что катеты прямоугольного треугольника равны √7 см и 3 см.
Для того чтобы найти гипотенузу треугольника мы будем использовать теорему Пифагора.
Вспомним ее.
Квадрат гипотенузы равен сумме квадратов катетов.
a2 + b2 = c2.
Подставим известные значения и решим полученное уравнение.
(√7)2 + 32 = x2;
7 + 9 = x2;
x2 = 16;
Извлечем квадратный корень из обеих частей уравнения и получим:
x1 = 4; x2 = -4.
Второй корень не подходит, так как длина катета не может быть отрицательным числом.
ответ: 4.
должно быть верно)
АС=АВ/tg 69=0,314/2,6051=0,121
Перпендикуляр МА=0,833 к плоскости АВС, значит МА перпендикулярн АВ и перпендикулярна АС.
Из прямоугольного ΔМАВ найдем МВ:
МВ²=МА²+АВ²=0,833²+0,314²=0,792485
МВ≈0,89
Из прямоугольного ΔМАС найдем МС:
МС²=МА²+АС²=0,833²+0,121²=0,70853
МС≈0,84
ответ: ≈0,89 и ≈0,84