план действий : 1) ищем производную;
2) приравниваем её к нулю и решаем получившееся уравнение ( ищем критические точки);
3) ставим найденные числа на числовой прямой и проверяем знаки производной на каждом промежутке;
4) пишем ответ.
Поехали?
1) у' = -2x +2
2) -2x +2 = 0
-2x = -2
x = 1
3) -∞ 1 +∞
+ -
4) ответ: при х ∈ (-∞; 1) функция возрастает
при х ∈ (1; +∞( функция убывает
Пусть H - середина ABCD, MH - высота пирамиды MABCD,
MH - медиана, биссектриса и высоты треугольника DBM => H - середина DB=> HL - средняя линия треугольника DMB => 2LH=DH;
AH перпендикулярно BD ( как диагонали квадрата),
AH перпендикулярно МH ( т.к. МH - высота пирамиды)
DB пересекает MH в точке H => AH перпендикулярна плоскости DMB, значит угол HLA = 60° (по условию),
CA = √(CB^2+AB^2)=6√2 (по теореме Пифагора)
HA=1/2CA=3√2
LM=AH/tg60° = √6
DM=2LM=2√6
MH=√(DM^2-DH^2)=√6 (по теореме Пифагора)
ответ: √6
в треугольнике ВСД знаем катет СД = 12см и гипотенузу ВС=13см. Находим второй катет ВД, он же высота: корень квадратный из 13*13-12*12=25 - 5см.
треугольник АВД равнобедренный прямоугольный (угол Д=90град, угол А=углу В= 45град). Значит его катеты равны: АД=ВД=5см. Длина АС=АД+СД=5+12=17см. Найдем площадь через АС и ВД: 1/2*17*5=42,5. Площадь через сторону ВС равна 1/2*н*13=42,5 отсюда н=42,5*2:13=6 целых 7/13