М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Вкуснополлия
Вкуснополлия
17.12.2022 00:58 •  Алгебра

6x(2x-1)-7x; 2(5x-4y+1)-3(3x-3y+1);

👇
Ответ:
Vaprosic
Vaprosic
17.12.2022

12х-6х-7х=0

-6х-7х=0

-13х=0

х=-13 

4,4(92 оценок)
Открыть все ответы
Ответ:
howl111
howl111
17.12.2022

Объяснение:

|x -1| + |x +3| ≤ 4

Решим это неравенство методом интервалов.

Найдем нули подмодульных выражений:

х - 1 =0 → х = 1

х + 3 = 0 → х = - 3

Эти значения разбивают числовую ось на три интервала:

х ∈ (-∞; - 3] ; (-3; 1]; (1; + ∞)

Решим заданное неравенство на каждом из этих промежутков.

1) 1) x∈ (-∞; - 3], при этом неравенство примет вид:

- (х - 1) - (х + 3) ≤ 4

-х + 1 - х - 3 ≤ 4

-2х ≤ 6

х ≥ - 3

Пересекая найденное решение x∈ [- 3; +∞) c рассматриваемым интервалом x∈ (-∞; - 3] , получаем решение x = - 3

2) х ∈ (-3; 1]

- (х - 1) + х + 3 ≤ 4

0*х ≤ 4  → х - любое число. Учитывая интервал, х  х ∈ (-3; 1]

3) х ∈  (1; + ∞)

х - 1 + х + 3 ≤ 4

2х ≤ 2

х ≤ 1 → х ∈ (- ∞; 1]

Для получения окончательного ответа объединим полученные решения:

x ∈ [- 3] ∪ (-3; 1] ∪ (- ∞; 1]

ответ: х ∈ [-3; 1]

4,5(78 оценок)
Ответ:
lena101992
lena101992
17.12.2022

<!--c-->

Преобразим заданное уравнение:

x3+12x2−27x=a

С производной построим график функции y=x3+12x2−27x.

1. Введём обозначение f(x)=x3+12x2−27x.

Найдём область определения функции D(f)=(−∞;+∞).

2. Найдем стационарные и критические точки, точки экстремума и промежутки монотонности функции:

f′(x)=(x3+12x2−27x)′=3x2+24x−27.

Внутренние точки области определения функции, в которых производная функции равна нулю, назывём стационарными, а внутренние точки области определения функции, в которых функция непрерывна, но производная не существует, —критическими.

Производная существует всюду в области определения функции, значит, критических точек у функции нет. Стационарные точки найдем из соотношения f′(x)=0:

3x2+24x−27=0|÷3x2+8x−9=0D4=(b2)2−ac=822+9=25x1,2=−b2±D4−−√a=−82±25−−√1=−82±5x1=−82−5=−9x2=−82+5=1

Критические и стационарные точки делят реальную числовую прямую на интервалы с неизменным знаком производной. Чтобы определить знак производной, достаточно вычислить значение производной функции в какой-либо точке соответственного интервала.

Если производная функции в критической (стационарной) точке:

1) меняет знак с отрицательного на положительный, то это точка минимума;

2) меняет знак с положительного на отрицательный, то это точка максимума;

3) не меняет знак, то в этой точке нет экстремума.

Итак, определим точки экстремума:

При x<−9 имеем положительную производную (на этом промежутке функция возрастает); при  −9<x<1 имеем отрицательную производную (на этом промежутке функция убывает). Значит, x=−9 — точка максимума функции. При  −9<x<1 имеем отрицательную производную, при

Объяснение:

4,4(66 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ