Объяснение:
Уравнение линейной функции:
у=kx×b
Заданная по условию линейная
функция:
у=0,5х-3
k=0,5; b=-3
а)
Чтобы записать уравнение ли
нейной функции, которая парал
лельна заданной, нужно задать
коэффициент k=0,5.
Значение "b" может быть любым,
но b=/=-3.
Например:
у=0,5х+3
Прямая у=0,5х+3 параллельна
заданной прямой у=0,5х-3 (так
как их угловые коэффициенты
равны).
б)
Чтобы прямая совпадала с заданой
прямой , должны совпадать оба ко
эффициента и "k" и "b" :
k=0,5=1/2
b=-3
Например:
у=1/2х-3
Прямая у=1/2х-3 совпадает с задан
ной прямой у=0,5х-3 (так как их уг
ловые коэффициенты "k"и коэф
фициенты "b" совпадают).
с)
Прямые пересекаются, если раз
личны их угловые коэффициен
ты:
k=0,2
Значение "b" может быть любым.
Например:
у=0,2х-5
Прямая у=0,2х-5 пересекает за
данную прямую у=0,5х-3 (так как
их угловые коэффициенты раз
личны).
Объяснение:
Для начала найдем область определения функции, и ее потенциальные точки разрыва
1)D(f)=R, точек разрыва нет
2) проверим функцию на четность, очевидно функция четная, т.к. при подстановке вместо икс минус икс функция вида не изменит.
3) найдем нули функции и знак функции на полученных интервалах, для этого разложим функцию на составляющие x^4-1=(x^2-1)(x^2+1)=(x-1)(x+1)(x^2+1)
Приравняем это к нулю, тогда x=1 x=-1
Исследуем знак функции на промежутках от минус бесконечности до минус 1, от минус 1 до 1, и от 1 до +бесконечности. Для этого подставим любую точку из промежутков и получим знаки +-+ (значит на промежутке от -беск до -1 и от 1 до+беск, функция выше оси Ох, на промежутке -1 до 1 функция ниже оси Ох)
приравняв к нулю икс, получим игрик равный -1
4)найдем ассимптоты, так как точек разрыва нет, то и вертикальных ассимптот нет, найдем наклонную асимптоту, для этого вычислим предел
стремится к бесконечности, а значит ассимптот нет
5)Исследуем точки экстремума и интервалы монотонности, тогда найдем производную
4x³ и приравняем ее к нулю 4x³=0, откуда x=0. Найдем знаки слева и справа от нуля, слева минус справа плюс, значит слева от нуля функция убывает, а справа возрастает. Т.к. 0 принадлежит области определения функция, то подставим его в изначальное уравнение, получим -1. Точка (0,-1) - точка экстремума, т.к. в этой точке производная меняет знак с минуса на плюс, то это точка минимума
6) найдем точки перегиба. Для этого найдем вторую производную - производную от производной = 12x^2. приравняем к нулю и вновь получим 0, найдем знаки слева и справа, с обеих сторон +, значит функция выпукла вниз на всей области определения, и точка 0 не является точкой перегиба
7) нужно построить график по всем значениям которые мы получили
16 минут - 100 конвертов
40 минут - ? конвертов
40*100:16=250 конвертов заклеит Таня за 40 минут
ответ 250 конвертов