Пусть первому рабочему для выполнения всей работы требуется х дней, а
второму у дней.
За день первый рабочий выполнял 1/х всей работы, а второй 1/у всей работы.
Соответственно, за 5 дней первый сделал 5/х всей работы, а второй 5/у.
Т.к. вместе они сделали всю работу (1), то составляем уравнение:
5/х + 5/у =1.
Если первый будет работать в 2 раза быстрей, т.е. ему потребуется не х дней, а х/2 дней, а второй - в два раза медленней, т.е. 2у дней, то по условию задачи эта же работа будет выполнена за 4 дня.
Составляем уравнение:
4/(х/2) + 4/(2у) =1
Решим систему двух уравнений:
5/х + 5/у =1
4/(х/2) + 4/(2у) =1
5х+5у=ху
2х+8у=ху
5х+5у=2х+8у
3х=3у
х=у
5/х+5/х=1
10/х=1
х=10(дней)-потребуется первому рабочему для выполнения всей работы.
Решаем:x = 18 + y
18 + y + y + (18 + y) / y = 34
18y + 2y^2 + 18 + y = 34y
2y^2 - 15y + 18 = 0
y = 6 или у = 1,5
х = 24 или х = 19,5
вот