1)y=√x+7
y=√-3+7
y=√4
y=2
2)x=1,21,y=c
C=√1,21
C=1,1
подставляем вместо x, число 4
3)y=5+√4+3
y=5+√7
Приблизительное значение
√7=2,6457
5+√7=7,6457
7,6457=7,64
4) наименьшее 10, наибольше 15,
X=9:y=√9+7=3+7=10
X=64:y=√64+7=8+7=15
5)-120,
y=16
16=5+√1-x
16-5=√1-x
11=√1-x
11²=(√1-x)²<---здесь мы возвели обе части в квадрат
121=1-x
-x=121-1
-x=120
x=-120
6)y≥7 или y €[7;+бесконечность]
Т.к a>b, тогда a+c>b+c, где c- любое число, мы прибавляем к обеим частям неравенства √x≥0 число 7
√x+7≥0+7
√x+7≥7
Следовательно ответ y≥7 или y €[7;+бесконечность]
Объяснение:
В решении.
Объяснение:
1) 3a³b² = при а= -3; b = -1/3
= 3 * (-3)³ * (-1/3)² =
= 3 * (-27) * 1/9 =
= (3* (-27))/9 = -9.
2) Одночлен называется представленным в стандартном виде , если он представлен в виде произведения числового множителя на первом месте и степеней различных переменных.
Числовой множитель у одночлена стандартного вида называется коэффициентом одночлена, сумму показателей степени переменных называют степенью одночлена.
а) 21х³у³ * (-4/7х) =
=(21 * (-4/7))х⁴у³ =
= -12х⁴у³;
б) -0,25a²b⁴ * (-8ba³) =
=((-0,25) * (-8))a⁵b⁵ =
= 2a⁵b⁵.
3. Упростить:
а) (-0,2ху⁵)³ = -0,008х³у¹⁵;
б) 8х⁵у * (-х³у⁴)⁴ = 8х⁵у * х¹²у¹⁶ = 8х¹⁷у¹⁷.
4)
а) 1/36х²у¹⁶ = (1/6ху⁸)²;
б) -8а¹²b³ = (-2a⁴b)³. скобки в кубе, если плохо видно.
б) a + b - a + b - b + a = a + b
в) 3y - 1 - 2y + 2 + y - 3 = 2y - 2
a) 5x - 5z - 2x + 2z = 3x - 3z
б) 8a + 6c + 8a - 2c - 4c = 16a
в) 5n - 3n - 6 + n - 6 = 3n
г) 6x + 2 - x + 2 - 3x = 2x + 4