М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
любаня20
любаня20
28.02.2021 21:12 •  Алгебра

Вклассе число мальчиков относится к числу девочек как 7: 5. сколько в классе девочек если в нем всего 24 человека

👇
Ответ:
У4КГРВ
У4КГРВ
28.02.2021
Пусть 7х девочек + 5х мальчиков=24
тогда 7х+5х=24
12х=24
х=2
следовательно количество девочек=7·2=14
а количество мальчиков=5·2=10
ОТВЕТ:мальчики-10,девочки-14
4,4(53 оценок)
Открыть все ответы
Ответ:
никита16l
никита16l
28.02.2021

если a < 0, нет точек пересечения,

если а = 0, бесконечно много точек пересечения,

если а > 0. одна точка пересечения.

Объяснение:

Графический метод.

1) Построим график функции у = |x| (красный график)

Так как |x| = x при x ≥ 0, то для x ≥ 0 графиком является луч с началом в точке (0; 0), биссектриса первой координатной четверти.

Так как |x| = - x при x < 0, то для x < 0 графиком является часть прямой у = - х, расположенная во второй координатной четверти.

2) Построим график функции  у = х + а (зеленый график) для различных значений а.

Графиком этой функции является прямая, проходящая под углом 45° к положительному направлению оси Ох, и пересекающая ось Оу в точке (0; а).

Если а < 0, то прямая проходит ниже графика функции у = |x| и не пересекает его.Если а = 0, то прямая проходит через начало координат и совпадает с частью графика функции y = |x|, тогда бесконечно много общих точек.Если а > 0, то прямая пересекает график функции y = |x| в одной точке.

Аналитический метод:

1) a < 0

|x| = x + a

Если х ≥ 0, то  x = x + a

                        a = 0

но а < 0, значит точек пересечения нет.

Если х < 0, то - x = x + a

                       - 2x = a

здесь левая часть положительна, правая - отрицательна, значит нет точек пересечения.

2) а = 0

|x| = x

равенство верно, для любых x ≥ 0.

Бесконечно много общих точек.

3) а > 0

Если x ≥ 0, то x = x + a

                       a = 0

но а > 0, значит точек пересечения нет.

Если x < 0, то - x = x + a

                       - 2x = a

обе части положительны, значит для каждого а > 0 найдется значение х, при котором равенство будет верно, следовательно одна точка пересечения.


Определите число точек пересечения графиков функций y=|x| и y=x+a для каждого значения числа a.
4,4(48 оценок)
Ответ:
Milanaмилана
Milanaмилана
28.02.2021

если a < 0, нет точек пересечения,

если а = 0, бесконечно много точек пересечения,

если а > 0. одна точка пересечения.

Объяснение:

Графический метод.

1) Построим график функции у = |x| (красный график)

Так как |x| = x при x ≥ 0, то для x ≥ 0 графиком является луч с началом в точке (0; 0), биссектриса первой координатной четверти.

Так как |x| = - x при x < 0, то для x < 0 графиком является часть прямой у = - х, расположенная во второй координатной четверти.

2) Построим график функции  у = х + а (зеленый график) для различных значений а.

Графиком этой функции является прямая, проходящая под углом 45° к положительному направлению оси Ох, и пересекающая ось Оу в точке (0; а).

Если а < 0, то прямая проходит ниже графика функции у = |x| и не пересекает его.Если а = 0, то прямая проходит через начало координат и совпадает с частью графика функции y = |x|, тогда бесконечно много общих точек.Если а > 0, то прямая пересекает график функции y = |x| в одной точке.

Аналитический метод:

1) a < 0

|x| = x + a

Если х ≥ 0, то  x = x + a

                        a = 0

но а < 0, значит точек пересечения нет.

Если х < 0, то - x = x + a

                       - 2x = a

здесь левая часть положительна, правая - отрицательна, значит нет точек пересечения.

2) а = 0

|x| = x

равенство верно, для любых x ≥ 0.

Бесконечно много общих точек.

3) а > 0

Если x ≥ 0, то x = x + a

                       a = 0

но а > 0, значит точек пересечения нет.

Если x < 0, то - x = x + a

                       - 2x = a

обе части положительны, значит для каждого а > 0 найдется значение х, при котором равенство будет верно, следовательно одна точка пересечения.


Определите число точек пересечения графиков функций y=|x| и y=x+a для каждого значения числа a.
4,6(71 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ