Пусть моркови было х кг.
Тогда картофеля было 2,5х кг, а лука 2,5х+14 кг.
Всего овощей на базе было х+2,5х+2,5х+14 кг, что по условию задачи равно 590 кг.
х+2,5х+2,5х+14=590
6х=590-14
х= 576:6
х=96 (кг)- морковь
2,5*96=240 (кг) - картофель
2,5*96+14 =254 (кг) лук
А вторая задача правильно задана, в смысле все условия вышеперечислены?
Пусть скорость катера х км/ч, тогда по расстояние из А в В было 8*(х+2) км - 8 это время, 2 это скорость течения реки, ну а формулу расстояния знают все :время *на скорость
А расстояние Из В в А составляет 9*(х-2) - минус Т.К. против течения. Так как расстояния туда и обратно равны составляем уравнение
9*(х-2) = 8*(х+2)
9х-18 =8х+16
9х-8х=18+16
1х=34 Км/ч - скорость катера
task/30061578 Известно , что число √2 является корнем уравнения x³ - (а+2)x²+bx-2a =0 (а и b -целые ) . Найдите значения а и b и остальные корни уравнения.
решение √2 корень уравнения ,следовательно :
(√2)³ - (а+2)*(√2)² + b*√2-2a =0 ⇔ (2+b)√2 - 4(a+1) =0 ; a , b ∈ ℤ ⇒
2+b =0 , т.е. b = - 2 ; 0 - 4(a+1) = 0 ⇔a+1 = 0 ⇒ a = - 1 .
Определили коэффициенты a и b. Получили определенное уравнение: x³- x²-2x + 2 =0 ⇔x²(x -1) -2(x -1) =0⇔ (x-1)(x²-2) =0⇔ (x-1)(x-√2)(x+√2) =0.
[ x = -√2 ; x =1 ; x =√2 .
ответ: a = - 1 , b = - 2 . x = { -√2 ; 1 ; √2 } .