1) Находим первую производную функции: y' = 2x+1 Приравниваем ее к нулю: 2x+1 = 0 x1 = -1/2 Вычисляем значения функции f(-1/2) = 3/4 Используем достаточное условие экстремума функции одной переменной. Найдем вторую производную: y'' = 2 Вычисляем: y''(-1/2) = 2>0 - значит точка x = -1/2 точка минимума функции.
2) Находим первую производную функции: y' = e^x/x-e^x/x^2 или y' = ((x-1)•e^x)/x^2 Приравниваем ее к нулю: ((x-1)•e^x)/x^2 = 0 x1 = 1 Вычисляем значения функции f(1) = e Используем достаточное условие экстремума функции одной переменной. Найдем вторую производную: y'' = e^x/x-2e^x/x^2+2e^x/x^3 или y'' = ((x^2-2x+2)•e^x)/x^3 Вычисляем: y''(1) = e>0 - значит точка x = 1 точка минимума функции.
Пусть х литров молока в первом бидоне, а у литров - во втором. х+у=75 литров молока. Если из первого вылить 1/5 часть молока останется х-1/5x=5x/5-x/5=4/5x=0,8х литров, а во второй долить 2 литра, получим у+2 литров молока, что в полтора раза больше, чем в первом: у+2=1,5*0,8х=1,2х Составим и решим систему уравнений: х+у=75 у+2=1,2х
Выразим значение у в первом уравнении: у=75-х
Подставим его во второе уравнение (метод подстановки): у+2=1,2х 75-х+2=1,2х 77-х-1,2х=0 -2,2х=-77 2,2х=77 х=77:2,2 х=35 (литров молока) - в первом бидоне Тогда во втором у=75-х=75-35=40 литров. ответ: в первом бидоне было 35 литров молока, а во втором 70 литров молока.
8х-8·3-4·5х-4·2=5х+19,
8х-24-20х-8=5х+19,
8х-20х-5х=19+24+8,
-17х=51,
х=51:(-17)
х=-3