Обозначим всю работу за 1 Пусть первая выполняет за час х , вторая выполняет за час у. Вместе они за час выполняют (х+у). За четыре часа 4·(х+у) Что и равно все работе,т. е 1 4(х+у)=1 Если же половину работы выполнит первая машинистка,а остаток- тоже половину вторая , то вся работа может быть напечатана за 9 часов.
Решаем систему
Вторая система ответов не удовлетворяет условию, потому как по условию вторая машинистка работает менее эффективно. (в системе же 5/24 больше чем 1/24)
Значит первая за час выполняет 1/6 часть всей работы, а всю работу выполняет за 6 часов. Вторая за час выполняет 1/12 часть всей работы, а всю работу выполняет за 12 часов
Х (км/ч) - собственная скорость баржи х+5 (км/ч) - скорость баржи по течению реки х-5 (км/ч) - скорость баржи против течения реки 48 (ч) - время движения баржи по течению реки х+5 42 (ч) - время движения баржи против течения реки х-5 Так как весь путь составил 5 часов, то составим уравнение:
48 + 42 =5 х+5 х-5
х≠5 х≠-5 Общий знаменатель: (х+5)(х-5) 48(х-5)+42(х+5)=5(х+5)(х-5) 48х-240+42х+210=5(х²-25) 90х-30=5х²-125 5х²-90х-95=0 х²-18х-19=0 Д=18²+4*19=324+76=400 х₁= 18-20 =-1 - не подходит по смыслу задачи 2 х₂=38 = 19 (км/ч) - собственная скорость баржи 2 ответ: 19 км/ч.