ответ: х км/ч - скорость течения
х+11 км/ч - скорость лодки по течению
11-х км/ч - скорость лодки против течения
112/(х+11) ч - время, затраченное лодкой на путь по течению
112/(11-х) ч - время, затраченное лодкой на путь против течения
т.к. время, затраченное на путь по течению, на 6 часов меньше, составляем уравнение
112/(х+11)+6=112/(11-х) *(х+11)(11-х)
112(11-х)+6(11-х)(11+х)=112(11+х)
1232-112х+726-6х^2=1232+112x
6x^2+224x-726=0 :2
3x^2+112x-363=0
D=12544+4356=16900
x1=-121/3 - не подходит
x2=3 км/ч
ответ скорость течения 3 км/ч
Пусть прямые 3x-5y=10 и 2x+ky=9 пересекаются в точке (х₀, у₀),
3x-5y = 10 2x + ky=9
5y = 3x-10 ky = -2x + 9
y = 3/5*x - 2 y = -2/k*x + 9/k / заметим, что k≠0
У первой ф-ции свободный член равен -2, значит прямая пересекается с осью ОУ в точке (0, -2), значит для того чтобы вторая прямая проходила через эту же точку надо, чтобы её координаты удовлетворяли ур-нию второй функции, т.е.
-2 = -2/k*0 + 9/k
-2 = 9/k
k = - 4,5
Если же точка перечения (х₀, у₀) лежит на координатной оси ОХ, значит ордината у₀ = 0, тогда для первой функции
0 = 3/5*x₀ - 2
3/5*x₀ = 2
x₀ =10/3
Подставим x₀ и у₀ во второе уравнение:
0 = -2/k*10/3 + 9/k
2/k*10/3 = 9/k
20/3k = 9/k
20k = 27k | :k (k≠0)
20 = 27 (невнрно => точка пересечения не может лежать на оси ОХ)
ответ: пересекаются в точке принадлежащей оси ОУ при k = - 4,5
а) x^3 - 7 = -27, x^3 = -20 может
б) x^3 - 7 = 34, x^3 = 41 может
в) x^3 - 7 = 132, x^3 = 139 может
г) x^3 - 7 = -64, x^3 = - 57 может