Формула работы А = P t Пусть первый рабочий,работая самостоятельно, может выполнить эту работу за х дней, а второй - за y дней. Тогда производительность первого рабочего Р1 = 1/х, а производительность второго рабочего Р2 = 1/ y, а их общая производительность при совместной работе равна Р = Р1 + Р2
А (1) P(1/дн.) t (дн.) I + II 1 1/4 4 I 1/3 1/х 1/3:1/х = х/3 II 2 /3 1/y 2 /3:1/y= 2y/3
Тогда 1/х + 1/y = 1/4 х/3 + 2y/3 = 10
х/3 + 2y/3 = 10 х + 2y = 10 3 х + 2y = 30 х = 30 - 2y
ответ: первый рабочий,работая самостоятельно, может выполнить эту работу за 12 дней, тогда второй - за 6 дней, или, первый рабочий, может выполнить эту работу за 5 дней, тогда второй - за 20 дней.
Проведем отрезки OB и OC, как показано на рисунке. Расстоянием от точки до прямой является длина перпендикуляра, проведенного к прямой. Поэтому, OE перпендикулярен AB, а OF перпендикулярен CD. Точки E и F делят свои хорды пополам (по свойству хорды) Получается, что треугольники OEB и OCF - прямоугольные, EB=AB/2 и CF=CD/2. По теореме Пифагора: OB2=OE2+EB2 OB2=242+(20/2)2 OB2=576+100=676 OB=26 OB=OC=26 (т.к. OB и OC - радиусы окружности) По теореме Пифагора: OC2=CF2+FO2 OC2=(CD/2)2+FO2 262=(CD/2)2+102 676=(CD/2)2+100 (CD/2)2=576 CD/2=24 CD=48 ответ: CD=48
f(x+2) = (3(x+2)+2) /((x+2) -5) = (3x+8) /(x-3);
f(x+8) = (3*(x+8) +2) /((x+8) - 5)=(3x+26) /(x+3);
f(x+2 ) - f(x+8) =
= (3x+8) /(x-3) - (3x+26) /(x+3)=
=(3x+8)*(x+3) - (3x+26)*(x-3) /(x-3)(x+3) =
(3x^2 + 17x + 24 - 3x^2 - 17x +78) /(x-3)(x+3) =102/(x^ -9)